
Chapter 6

The Derivative of exp and Dynkin’s
Formula

6.1 The Derivative of the Exponential Map

We know that if [X, Y ] = 0, then exp(X + Y ) = exp(X) exp(Y ), but this generally false if
X and Y do not commute. For X and Y in a small enough open subset, U , containing 0,
we know that exp is a diffeomorphism from U to its image, so the function, µ : U × U → U ,
given by

µ(X, Y ) = log(exp(X) exp(Y ))

is well-defined and it turns out that, for U small enough, it is analytic. Thus, it is natural to
seek a formula for the Taylor expansion of µ near the origin. This problem was investigated
by Campbell (1897/98), Baker (1905) and in a more rigorous fashion by Hausdorff (1906).
These authors gave recursive identities expressing the Taylor expansion of µ at the origin
and the corresponding result is often referred to as the Campbell-Baker-Hausdorff Formula.
F. Schur (1891) and Poincaré (1899) also investigated the exponential map, in particular
formulae for its derivative and the problem of expressing the function µ. However, it was
Dynkin who finally gave an explicit formula (see Section 6.3) in 1947.

The proof that µ is analytic in a suitable domain can be proved using a formula for the
derivative of the exponential map, a formula that was obtained by F. Schur and Poincaré.
Thus, we begin by presenting such a formula.

First, we introduce a convenient notation. If A is any real (or complex) n × n matrix,
the following formula is clear:

� 1

0

etAdt =
∞�

k=0

Ak

(k + 1)!
.

If A is invertible, then the right-hand side can be written explicitly as
∞�

k=0

Ak

(k + 1)!
= A−1(eA − I),
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and we also write the latter as

eA − I

A
=

∞�

k=0

Ak

(k + 1)!
. (∗)

Even if A is not invertible, we use (∗) as the definition of e
A−I

A
.

We can use the following trick to figure out what (dX exp)(Y ) is:

(dX exp)(Y ) =
d

d�

����
�=0

exp(X + �Y ) =
d

d�

����
�=0

dRexp(X+�Y )(1),

since by Proposition 5.2, the map, s �→ Rexp s(X+�Y ) is the flow of the left-invariant vector
field (X + �Y )L on G. Now, (X + �Y )L is an �-dependent vector field which depends on �
in a C1 fashion. From the theory of ODE’s, if p �→ v�(p) is a smooth vector field depending
in a C1 fashion on a real parameter � and if Φ�

t
denotes its flow (after time), then the map

� �→ Φ�

t
is differentiable and we have

∂Φ�

t

∂�
(x) =

�
t

0

dΦ�
t(x)(Φ

�

t−s
)
∂v�
∂�

(Φ�

s
(x))ds.

See Duistermaat and Kolk [53], Appendix B, Formula (B.10). Using this, the following is
proved in Duistermaat and Kolk [53] (Chapter 1, Section 1.5):

Proposition 6.1 Given any Lie group, G, for any X ∈ g, the linear map,
d exp

X
: g → Texp(X)G, is given by

d exp
X

= (dRexp(X))1 ◦
� 1

0

es adXds = (dRexp(X))1 ◦
eadX − I

adX

= (dLexp(X))1 ◦
� 1

0

e−s adXds = (dLexp(X))1 ◦
I − e−adX

adX
.

Remark: If G is a matrix group of n× n matrices, we see immediately that the derivative
of left multiplication (X �→ LAX = AX) is given by

(dLA)XY = AY,

for all n× n matrices, X, Y . Consequently, for a matrix group, we get

d exp
X
= eX

�
I − e−adX

adX

�
.

Now, if A is a real matrix, it is clear that the (complex) eigenvalues of
� 1

0 esAds are of
the form

eλ − 1

λ
(= 1 if λ = 0),

where λ ranges over the (complex) eigenvalues of A. Consequently, we get
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Proposition 6.2 The singular points of the exponential map, exp: g → G, that is, the set
of X ∈ g such that d exp

X
is singular (not invertible) are the X ∈ g such that the linear

map, adX : g → g, has an eigenvalue of the form k2πi, with k ∈ Z and k �= 0.

Another way to describe the singular locus , Σ, of the exponential map is to say that it
is the disjoint union

Σ =
�

k∈Z−{0}

kΣ1,

where Σ1 is the algebraic variety in g given by

Σ1 = {X ∈ g | det(adX − 2πi I) = 0}.

For example, for SL(2,R),

Σ1 =

��
a b
c −a

�
∈ sl(2) | a2 + bc = −π2

�
,

a two-sheeted hyperboloid mapped to −I by exp.

Let ge = g−Σ be the set of X ∈ g such that e
adX−I

adX
is invertible. This is an open subset

of g containing 0.

6.2 The Product in Logarithmic Coordinates

Since the map,

X �→ eadX − I

adX
is invertible for all X ∈ ge = g− Σ, in view of the chain rule, the inverse of the above map,

X �→ adX

eadX − I
,

is an analytic function from ge to gl(g, g). Let g2
e
be the subset of g × ge consisting of all

(X, Y ) such that the solution, t �→ Z(t), of the differential equation

dZ(t)

dt
=

adZ(t)

eadZ(t) − I
(X)

with initial condition Z(0) = Y (∈ ge), is defined for all t ∈ [0, 1]. Set

µ(X, Y ) = Z(1), (X, Y ) ∈ g2
e
.

The following theorem is proved in Duistermaat and Kolk [53] (Chapter 1, Section 1.6,
Theorem 1.6.1):
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Theorem 6.3 Given any Lie group G with Lie algebra, g, the set g2
e
is an open subset of

g× g containing (0, 0) and the map, µ : g2
e
→ g, is real-analytic. Furthermore, we have

exp(X) exp(Y ) = exp(µ(X, Y )), (X, Y ) ∈ g2
e
,

where exp: g → G. If g is a complex Lie algebra, then µ is complex-analytic.

We may think of µ as the product in logarithmic coordinates. It is explained in Duister-
maat and Kolk [53] (Chapter 1, Section 1.6) how Theorem 6.3 implies that a Lie group can
be provided with the structure of a real-analytic Lie group. Rather than going into this, we
will state a remarkable formula due to Dynkin expressing the Taylor expansion of µ at the
origin.

6.3 Dynkin’s Formula

As we said in Section 6.3, the problem of finding the Taylor expansion of µ near the origin
was investigated by Campbell (1897/98), Baker (1905) and Hausdorff (1906). However, it
was Dynkin who finally gave an explicit formula in 1947. There are actually slightly different
versions of Dynkin’s formula. One version is given (and proved convergent) in Duistermaat
and Kolk [53] (Chapter 1, Section 1.7). Another slightly more explicit version (because it
gives a formula for the homogeneous components of µ(X, Y )) is given (and proved convergent)
in Bourbaki [22] (Chapter II, §6, Section 4) and Serre [136] (Part I, Chapter IV, Section 8).
We present the version in Bourbaki and Serre without proof. The proof uses formal power
series and free Lie algebras.

Given X, Y ∈ g2
e
, we can write

µ(X, Y ) =
∞�

n=1

zn(X, Y ),

where zn(X, Y ) is a homogeneous polynomial of degree n in the non-commuting variables
X, Y .

Theorem 6.4 (Dynkin’s Formula) If we write µ(X, Y ) =
�∞

n=1 zn(X, Y ), then we have

zn(X, Y ) =
1

n

�

p+q=n

(z�
p,q
(X, Y ) + z��

p,q
(X, Y )),

with

z�
p,q
(X, Y ) =

�

p1+···+pm=p

q1+···+qm−1=q−1
pi+qi≥1, pm≥1, m≥1

(−1)m+1

m

��
m−1�

i=1

(adX)pi

pi!

(adY )qi

qi!

�
(adX)pm

pm!

�
(Y )
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and

z��
p,q
(X, Y ) =

�

p1+···+pm−1=p−1
q1+···+qm−1=q

pi+qi≥1, m≥1

(−1)m+1

m

�
m−1�

i=1

(adX)pi

pi!

(adY )qi

qi!

�
(X).

As a concrete illustration of Dynkin’s formula, after some labor, the following Taylor
expansion up to order 4 is obtained:

µ(X, Y ) = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]] +

1

12
[Y, [Y,X]]− 1

24
[X, [Y, [X, Y ]]]

+ higher order terms.

Observe that due the lack of associativity of the Lie bracket quite different looking ex-
pressions can be obtained using the Jacobi identity. For example,

−[X, [Y, [X, Y ]]] = [Y, [X, [Y,X]]].

There is also an integral version of the Campbell-Baker-Hausdorff formula, see Hall [70]
(Chapter 3).
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Chapter 7

Bundles, Riemannian Manifolds and
Homogeneous Spaces, II

7.1 Fibre Bundles

We saw in Section 2.2 that a transitive action, · : G × X → X, of a group, G, on a set,
X, yields a description of X as a quotient G/Gx, where Gx is the stabilizer of any element,
x ∈ X. In Theorem 2.26, we saw that if X is a “well-behaved” topological space, G is a
“well-behaved” topological group and the action is continuous, then G/Gx is homeomorphic
to X. In particular the conditions of Theorem 2.26 are satisfied if G is a Lie group and
X is a manifold. Intuitively, the above theorem says that G can be viewed as a family of
“fibres”, Gx, all isomorphic to G, these fibres being parametrized by the “base space”, X,
and varying smoothly when x moves in X. We have an example of what is called a fibre
bundle, in fact, a principal fibre bundle. Now that we know about manifolds and Lie groups,
we can be more precise about this situation.

Although we will not make extensive use of it, we begin by reviewing the definition of a
fibre bundle because we believe that it clarifies the notions of vector bundles and principal
fibre bundles, the concepts that are our primary concern. The following definition is not the
most general but it is sufficient for our needs:

Definition 7.1 A fibre bundle with (typical) fibre, F , and structure group, G, is a tuple,
ξ = (E, π, B, F,G), where E,B, F are smooth manifolds, π : E → B is a smooth surjective
map, G is a Lie group of diffeomorphisms of F and there is some open cover, U = (Uα)α∈I ,
of B and a family, ϕ = (ϕα)α∈I , of diffeomorphisms,

ϕα : π
−1(Uα) → Uα × F.

The space, B, is called the base space, E is called the total space, F is called the (typical)
fibre, and each ϕα is called a (local) trivialization. The pair, (Uα,ϕα), is called a bundle
chart and the family, {(Uα,ϕα)}, is a trivializing cover . For each b ∈ B, the space, π−1(b),

223
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is called the fibre above b; it is also denoted by Eb, and π−1(Uα) is also denoted by E � Uα.
Furthermore, the following properties hold:

(a) The diagram

π−1(Uα)

π

��

ϕα �� Uα × F

p1
��

Uα

commutes for all α ∈ I, where p1 : Uα × F → Uα is the first projection. Equivalently,
for all (b, y) ∈ Uα × F ,

π ◦ ϕ−1
α
(b, y) = b.

For every (Uα,ϕα) and every b ∈ Uα, we have the diffeomorphism,

(p2 ◦ ϕα) � Eb : Eb → F,

where p2 : Uα×F → F is the second projection, which we denote by ϕα,b. (So, we have
the diffeomorphism, ϕα,b : π−1(b) (= Eb) → F .) Furthermore, for all Uα, Uβ in U such
that Uα ∩ Uβ �= ∅, for every b ∈ Uα ∩ Uβ, there is a relationship between ϕα,b and ϕβ,b

which gives the twisting of the bundle:

(b) The diffeomorphism,
ϕα,b ◦ ϕ−1

β,b
: F → F,

is an element of the group G.

(c) The map, gαβ : Uα ∩ Uβ → G, defined by

gαβ(b) = ϕα,b ◦ ϕ−1
β,b

is smooth. The maps gαβ are called the transition maps of the fibre bundle.

A fibre bundle, ξ = (E, π, B, F,G), is also referred to, somewhat loosely, as a fibre bundle
over B or a G-bundle and it is customary to use the notation

F −→ E −→ B,

or
F �� E

��
B

even though it is imprecise (the group G is missing!) and it clashes with the notation for
short exact sequences. Observe that the bundle charts, (Uα,ϕα), are similar to the charts of
a manifold.
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Actually, Definition 7.1 is too restrictive because it does not allow for the addition of
compatible bundle charts, for example, when considering a refinement of the cover, U . This
problem can easily be fixed using a notion of equivalence of trivializing covers analogous to
the equivalence of atlases for manifolds (see Remark (2) below). Also Observe that (b) and
(c) imply that the isomorphism, ϕα ◦ϕ−1

β
: (Uα ∩Uβ)×F → (Uα ∩Uβ)×F , is related to the

smooth map, gαβ : Uα ∩ Uβ → G, by the identity

ϕα ◦ ϕ−1
β
(b, x) = (b, gαβ(b)(x)),

for all b ∈ Uα ∩ Uβ and all x ∈ F .

Note that the isomorphism, ϕα ◦ϕ−1
β

: (Uα∩Uβ)×F → (Uα∩Uβ)×F , describes how the
fibres viewed over Uβ are viewed over Uα. Thus, it might have been better to denote gα,β by
gα
β
, so that

gβ
α
= ϕβ,b ◦ ϕ−1

α,b
,

where the subscript, α, indicates the source and the superscript, β, indicates the target.

Intuitively, a fibre bundle over B is a family, E = (Eb)b∈B, of spaces, Eb, (fibres) indexed
by B and varying smoothly as b moves in B, such that every Eb is diffeomorphic to F . The
bundle, E = B×F , where π is the first projection, is called the trivial bundle (over B). The
trivial bundle, B×F , is often denoted �F . The local triviality condition (a) says that locally ,
that is, over every subset, Uα, from some open cover of the base space, B, the bundle ξ � Uα

is trivial. Note that if G is the trivial one-element group, then the fibre bundle is trivial. In
fact, the purpose of the group G is to specify the “twisting” of the bundle, that is, how the
fibre, Eb, gets twisted as b moves in the base space, B.

A Möbius strip is an example of a nontrivial fibre bundle where the base space, B, is
the circle S1 and the fibre space, F , is the closed interval [−1, 1] and the structural group
is G = {1,−1}, where −1 is the reflection of the interval [−1, 1] about its midpoint, 0. The
total space, E, is the strip obtained by rotating the line segment [−1, 1] around the circle,
keeping its midpoint in contact with the circle, and gradually twisting the line segment so
that after a full revolution, the segment has been tilted by π. The reader should work out
the transition functions for an open cover consisting of two open intervals on the circle.

A Klein bottle is also a fibre bundle for which both the base space and the fibre are the
circle, S1. Again, the reader should work out the details for this example.

Other examples of fibre bundles are:

(1) SO(n+ 1), an SO(n)-bundle over the sphere Sn with fibre SO(n). (for n ≥ 0).

(2) SU(n+ 1), an SU(n)-bundle over the sphere S2n+1 with fibre SU(n) (for n ≥ 0).

(3) SL(2,R), an SO(2)-bundle over the upper-half space H, with fibre SO(2).

(4) GL(n,R), an O(n)-bundle over the space, SPD(n), of symmetric, positive definite
matrices, with fibre O(n).
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(5) GL+(n,R), an SO(n)-bundle over the space, SPD(n), of symmetric, positive definite
matrices, with fibre SO(n).

(6) SO(n + 1), an O(n)-bundle over the real projective space RP
n with fibre O(n) (for

n ≥ 0).

(7) SU(n + 1), an U(n)-bundle over the complex projective space CP
n with fibre U(n)

(for n ≥ 0).

(8) O(n), an O(k)×O(n− k)-bundle over the Grassmannian, G(k, n) with fibre
O(k)×O(n− k).

(9) SO(n) an S(O(k)×O(n− k))-bundle over the Grassmannian, G(k, n) with fibre
S(O(k)×O(n− k)).

(10) From Section 2.5, we see that the Lorentz group, SO0(n, 1), is an SO(n)-bundle over
the space, H+

n
(1), consisting of one sheet of the hyperbolic paraboloid, Hn(1), with

fibre SO(n).

Observe that in all the examples above, F = G, that is, the typical fibre is identical to the
group G. Special bundles of this kind are called principal fibre bundles .

Remarks:

(1) The above definition is slightly different (but equivalent) to the definition given in Bott
and Tu [19], page 47-48. Definition 7.1 is closer to the one given in Hirzebruch [77].
Bott and Tu and Hirzebruch assume that G acts effectively on the left on the fibre,
F . This means that there is a smooth action, · : G × F → F , and recall that G acts
effectively on F iff for every g ∈ G,

if g · x = x for all x ∈ F , then g = 1.

Every g ∈ G induces a diffeomorphism, ϕg : F → F , defined by

ϕg(x) = g · x,

for all x ∈ F . The fact that G acts effectively on F means that the map, g �→ ϕg, is
injective. This justifies viewing G as a group of diffeomorphisms of F , and from now
on, we will denote ϕg(x) by g(x).

(2) We observed that Definition 7.1 is too restrictive because it does not allow for the
addition of compatible bundle charts. We can fix this problem as follows: Given a
trivializing cover, {(Uα,ϕα)}, for any open, U , of B and any diffeomorphism,

ϕ : π−1(U) → U × F,
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we say that (U,ϕ) is compatible with the trivializing cover, {(Uα,ϕα)}, iff whenever
U ∩ Uα �= ∅, there is some smooth map, gα : U ∩ Uα → G, so that

ϕ ◦ ϕ−1
α
(b, x) = (b, gα(b)(x)),

for all b ∈ U ∩Uα and all x ∈ F . Two trivializing covers are equivalent iff every bundle
chart of one cover is compatible with the other cover. This is equivalent to saying that
the union of two trivializing covers is a trivializing cover. Then, we can define a fibre
bundle as a tuple, (E, π, B, F,G, {(Uα,ϕα)}), where {(Uα,ϕα)} is an equivalence class
of trivializing covers. As for manifolds, given a trivializing cover, {(Uα,ϕα)}, the set of
all bundle charts compatible with {(Uα,ϕα)} is a maximal trivializing cover equivalent
to {(Uα,ϕα)}.

A special case of the above occurs when we have a trivializing cover, {(Uα,ϕα)}, with
U = {Uα} an open cover of B and another open cover, V = (Vβ)β∈J , of B which is a
refinement of U . This means that there is a map, τ : J → I, such that Vβ ⊆ Uτ(β) for
all β ∈ J . Then, for every Vβ ∈ V , since Vβ ⊆ Uτ(β), the restriction of ϕτ(β) to Vβ is a
trivialization

ϕ�
β
: π−1(Vβ) → Vβ × F

and conditions (b) and (c) are still satisfied, so (Vβ,ϕ�
β
) is compatible with {(Uα,ϕα)}.

(3) (For readers familiar with sheaves) Hirzebruch defines the sheaf, G∞, where Γ(U,G∞)
is the group of smooth functions, g : U → G, where U is some open subset of B and
G is a Lie group acting effectively (on the left) on the fibre F . The group operation
on Γ(U,G∞) is induced by multiplication in G, that is, given two (smooth) functions,
g : U → G and h : U → G,

gh(b) = g(b)h(b),

for all b ∈ U .

� Beware that gh is not function composition, unless G itself is a group of functions,
which is the case for vector bundles.

Our conditions (b) and (c) are then replaced by the following equivalent condition: For
all Uα, Uβ in U such that Uα ∩ Uβ �= ∅, there is some gαβ ∈ Γ(Uα ∩ Uβ, G∞) such that

ϕα ◦ ϕ−1
β
(b, x) = (b, gαβ(b)(x)),

for all b ∈ Uα ∩ Uβ and all x ∈ F .

(4) The family of transition functions (gαβ) satisfies the cocycle condition,

gαβ(b)gβγ(b) = gαγ(b),
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for all α, β, γ such that Uα ∩Uβ ∩Uγ �= ∅ and all b ∈ Uα ∩Uβ ∩Uγ. Setting α = β = γ,
we get

gαα = id,

and setting γ = α, we get
gβα = g−1

αβ
.

Again, beware that this means that gβα(b) = g−1
αβ
(b), where g−1

αβ
(b) is the inverse of

gβα(b) in G. In general, g−1
αβ

is not the functional inverse of gβα.

The classic source on fibre bundles is Steenrod [141]. The most comprehensive treatment
of fibre bundles and vector bundles is probably given in Husemoller [82]. However, we can
hardly recommend this book. We find the presentation overly formal and intuitions are
absent. A more extensive list of references is given at the end of Section 7.5.

Remark: (The following paragraph is intended for readers familiar with Čech cohomology.)
The cocycle condition makes it possible to view a fibre bundle over B as a member of a
certain (Čech) cohomology set, Ȟ1(B,G), where G denotes a certain sheaf of functions from
the manifold B into the Lie group G, as explained in Hirzebruch [77], Section 3.2. However,
this requires defining a noncommutative version of Čech cohomology (at least, for Ȟ1), and
clarifying when two open covers and two trivializations define the same fibre bundle over B,
or equivalently, defining when two fibre bundles over B are equivalent. If the bundles under
considerations are line bundles (see Definition 7.6), then Ȟ1(B,G) is actually a group. In
this case, G = GL(1,R) ∼= R

∗ in the real case and G = GL(1,C) ∼= C
∗ in the complex case

(where R∗ = R−{0} and C
∗ = C−{0}), and the sheaf G is the sheaf of smooth (real-valued

or complex-valued) functions vanishing nowhere. The group, Ȟ1(B,G), plays an important
role, especially when the bundle is a holomorphic line bundle over a complex manifold. In
the latter case, it is called the Picard group of B.

The notion of a map between fibre bundles is more subtle than one might think because
of the structure group, G. Let us begin with the simpler case where G = Diff(F ), the group
of all smooth diffeomorphisms of F .

Definition 7.2 If ξ1 = (E1, π1, B1, F,Diff(F )) and ξ2 = (E2, π2, B2, F,Diff(F )) are two
fibre bundles with the same typical fibre, F , and the same structure group, G = Diff(F ),
a bundle map (or bundle morphism), f : ξ1 → ξ2, is a pair, f = (fE, fB), of smooth maps,
fE : E1 → E2 and fB : B1 → B2, such that

(a) The following diagram commutes:

E1

π1

��

fE �� E2

π2

��
B1

fB

�� B2
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(b) For every b ∈ B1, the map of fibres,

fE � π−1
1 (b) : π−1

1 (b) → π−1
2 (fB(b)),

is a diffeomorphism (preservation of the fibre).

A bundle map, f : ξ1 → ξ2, is an isomorphism if there is some bundle map, g : ξ2 → ξ1, called
the inverse of f such that

gE ◦ fE = id and fE ◦ gE = id.

The bundles ξ1 and ξ2 are called isomorphic. Given two fibre bundles, ξ1 = (E1, π1, B, F,G)
and ξ2 = (E2, π2, B, F,G), over the same base space, B, a bundle map (or bundle morphism),
f : ξ1 → ξ2, is a pair, f = (fE, fB), where fB = id (the identity map). Such a bundle map is
an isomorphism if it has an inverse as defined above. In this case, we say that the bundles
ξ1 and ξ2 over B are isomorphic.

Observe that the commutativity of the diagram in Definition 7.2 implies that fB is
actually determined by fE. Also, when f is an isomorphism, the surjectivity of π1 and
π2 implies that

gB ◦ fB = id and fB ◦ gB = id.

Thus, when f = (fE, fB) is an isomorphism, both fE and fB are diffeomorphisms.

Remark: Some authors do not require the “preservation” of fibres. However, it is automatic
for bundle isomorphisms.

When we have a bundle map, f : ξ1 → ξ2, as above, for every b ∈ B, for any trivializations
ϕα : π

−1
1 (Uα) → Uα × F of ξ1 and ϕ�

β
: π−1

2 (Vβ) → Vβ × F of ξ2, with b ∈ Uα and fB(b) ∈ Vβ,
we have the map,

ϕ�
β
◦ fE ◦ ϕ−1

α
: (Uα ∩ f−1

B
(Vβ))× F → Vβ × F.

Consequently, as ϕα and ϕ�
α
are diffeomorphisms and as f is a diffeomorphism on fibres, we

have a map, ρα,β : Uα ∩ f−1
B

(Vβ) → Diff(F ), such that

ϕ�
β
◦ fE ◦ ϕ−1

α
(b, x) = (fB(b), ρα,β(b)(x)),

for all b ∈ Uα ∩ f−1
B

(Vβ) and all x ∈ F . Unfortunately, in general, there is no garantee that
ρα,β(b) ∈ G or that it be smooth. However, this will be the case when ξ is a vector bundle
or a principal bundle.

Since we may always pick Uα and Vβ so that fB(Uα) ⊆ Vβ, we may also write ρα instead
of ρα,β, with ρα : Uα → G. Then, observe that locally, fE is given as the composition

π−1
1 (Uα)

ϕα �� Uα × F
�fα �� Vβ × F

ϕ
�
β
−1

�� π−1
2 (Vβ)

z �� (b, x) �� (fB(b), ρα(b)(x)) �� ϕ�
β

−1(fB(b), ρα(b)(x)),
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with �fα(b, x) = (fB(b), ρα(b)(x)), that is,

fE(z) = ϕ�
β

−1(fB(b), ρα(b)(x)), with z ∈ π−1
1 (Uα) and (b, x) = ϕα(z).

Conversely, if (fE, fB) is a pair of smooth maps satisfying the commutative diagram of Defini-
tion 7.2 and the above conditions hold locally, then as ϕα, ϕ

�−1
β

and ρα(b) are diffeomorphisms
on fibres, we see that fE is a diffeomorphism on fibres.

In the general case where the structure group, G, is not the whole group of diffeomor-
phisms, Diff(F ), following Hirzebruch [77], we use the local conditions above to define the
“right notion” of bundle map, namely Definition 7.3. Another advantage of this definition
is that two bundles (with the same fibre, structure group, and base) are isomorphic iff they
are equivalent (see Proposition 7.1 and Proposition 7.2).

Definition 7.3 Given two fibre bundles, ξ1 = (E1, π1, B1, F,G) and ξ2 = (E2, π2, B2, F,G),
a bundle map, f : ξ1 → ξ2, is a pair, f = (fE, fB), of smooth maps, fE : E1 → E2 and
fB : B1 → B2, such that

(a) The diagram

E1

π1

��

fE �� E2

π2

��
B1

fB

�� B2

commutes.

(b) There is an open cover, U = (Uα)α∈I , for B1, an open cover, V = (Vβ)β∈J , for B2,
a family, ϕ = (ϕα)α∈I , of trivializations, ϕα : π

−1
1 (Uα) → Uα × F , for ξ1, a family,

ϕ� = (ϕ�
β
)β∈J , of trivializations, ϕ�

β
: π−1

2 (Vβ) → Vβ×F , for ξ2, such that for every b ∈ B,
there are some trivializations, ϕα : π

−1
1 (Uα) → Uα×F and ϕ�

β
: π−1

2 (Vβ) → Vβ×F , with
fB(Uα) ⊆ Vβ, b ∈ Uα and some smooth map,

ρα : Uα → G,

such that ϕ�
β
◦ fE ◦ ϕ−1

α
: Uα × F → Vα × F is given by

ϕ�
β
◦ fE ◦ ϕ−1

α
(b, x) = (fB(b), ρα(b)(x)),

for all b ∈ Uα and all x ∈ F .

A bundle map is an isomorphism if it has an inverse as in Definition 7.2. If the bundles ξ1
and ξ2 are over the same base, B, then we also require fB = id.

As we remarked in the discussion before Definition 7.3, condition (b) insures that the
maps of fibres,

fE � π−1
1 (b) : π−1

1 (b) → π−1
2 (fB(b)),
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are diffeomorphisms. In the special case where ξ1 and ξ2 have the same base, B1 = B2 = B,
we require fB = id and we can use the same cover (i.e., U = V) in which case condition (b)
becomes: There is some smooth map, ρα : Uα → G, such that

ϕ�
α
◦ f ◦ ϕα

−1(b, x) = (b, ρα(b)(x)),

for all b ∈ Uα and all x ∈ F .

We say that a bundle, ξ, with base B and structure group G is trivial iff ξ is isomorphic
to the product bundle, B × F , according to the notion of isomorphism of Definition 7.3.

We can also define the notion of equivalence for fibre bundles over the same base space, B
(see Hirzebruch [77], Section 3.2, Chern [33], Section 5, and Husemoller [82], Chapter 5). We
will see shortly that two bundles over the same base are equivalent iff they are isomorphic.

Definition 7.4 Given two fibre bundles, ξ1 = (E1, π1, B, F,G) and ξ2 = (E2, π2, B, F,G),
over the same base space, B, we say that ξ1 and ξ2 are equivalent if there is an open cover,
U = (Uα)α∈I , for B, a family, ϕ = (ϕα)α∈I , of trivializations, ϕα : π

−1
1 (Uα) → Uα × F , for

ξ1, a family, ϕ� = (ϕ�
α
)α∈I , of trivializations, ϕ�

α
: π−1

2 (Uα) → Uα × F , for ξ2, and a family,
(ρα)α∈I , of smooth maps, ρα : Uα → G, such that

g�
αβ
(b) = ρα(b)gαβ(b)ρβ(b)

−1, for all b ∈ Uα ∩ Uβ.

Since the trivializations are bijections, the family (ρα)α∈I is unique. The following propo-
sition shows that isomorphic fibre bundles are equivalent:

Proposition 7.1 If two fibre bundles, ξ1 = (E1, π1, B, F,G) and ξ2 = (E2, π2, B, F,G), over
the same base space, B, are isomorphic, then they are equivalent.

Proof . Let f : ξ1 → ξ2 be a bundle isomorphism. Then, we know that for some suitable
open cover of the base, B, and some trivializing families, (ϕα) for ξ1 and (ϕ�

α
) for ξ2, there

is a family of maps, ρα : Uα → G, so that

ϕ�
α
◦ f ◦ ϕα

−1(b, x) = (b, ρα(b)(x)),

for all b ∈ Uα and all x ∈ F . Recall that

ϕα ◦ ϕ−1
β
(b, x) = (b, gαβ(b)(x)),

for all b ∈ Uα ∩ Uβ and all x ∈ F . This is equivalent to

ϕ−1
β
(b, x) = ϕ−1

α
(b, gαβ(b)(x)),

so it is notationally advantageous to introduce ψα such that ψα = ϕ−1
α
. Then, we have

ψβ(b, x) = ψα(b, gαβ(b)(x))
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and
ϕ�
α
◦ f ◦ ϕ−1

α
(b, x) = (b, ρα(b)(x))

becomes
ψα(b, x) = f−1 ◦ ψ�

α
(b, ρα(b)(x)).

We have
ψβ(b, x) = ψα(b, gαβ(b)(x)) = f−1 ◦ ψ�

α
(b, ρα(b)(gαβ(b)(x)))

and also
ψβ(b, x) = f−1 ◦ ψ�

β
(b, ρβ(b)(x)) = f−1 ◦ ψ�

α
(b, g�

αβ
(b)(ρβ(b)(x)))

from which we deduce
ρα(b)(gαβ(b)(x)) = g�

αβ
(b)(ρβ(b)(x)),

that is
g�
αβ
(b) = ρα(b)gαβ(b)ρβ(b)

−1, for all b ∈ Uα ∩ Uβ,

as claimed.

Remark: If ξ1 = (E1, π1, B1, F,G) and ξ2 = (E2, π2, B2, F,G) are two bundles over different
bases and f : ξ1 → ξ2 is a bundle isomorphism, with f = (fB, fE), then fE and fB are
diffeomorphisms and it is easy to see that we get the conditions

g�
αβ
(fB(b)) = ρα(b)gαβ(b)ρβ(b)

−1, for all b ∈ Uα ∩ Uβ.

The converse of Proposition 7.1 also holds.

Proposition 7.2 If two fibre bundles, ξ1 = (E1, π1, B, F,G) and ξ2 = (E2, π2, B, F,G), over
the same base space, B, are equivalent then they are isomorphic.

Proof . Assume that ξ1 and ξ2 are equivalent. Then, for some suitable open cover of the
base, B, and some trivializing families, (ϕα) for ξ1 and (ϕ�

α
) for ξ2, there is a family of maps,

ρα : Uα → G, so that

g�
αβ
(b) = ρα(b)gαβ(b)ρβ(b)

−1, for all b ∈ Uα ∩ Uβ,

which can be written as
g�
αβ
(b)ρβ(b) = ρα(b)gαβ(b).

For every Uα, define fα as the composition

π−1
1 (Uα)

ϕα �� Uα × F
�fα �� Uα × F

ϕ
�
α
−1

�� π−1
2 (Uα)

z �� (b, x) �� (b, ρα(b)(x)) �� ϕ�
α

−1(b, ρα(b)(x)),
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that is,
fα(z) = ϕ�

α

−1(b, ρα(b)(x)), with z ∈ π−1
1 (Uα) and (b, x) = ϕα(z).

Clearly, the definition of fα implies that

ϕ�
α
◦ fα ◦ ϕα

−1(b, x) = (b, ρα(b)(x)),

for all b ∈ Uα and all x ∈ F and, locally, fα is a bundle isomorphism with respect to ρα. If
we can prove that any two fα and fβ agree on the overlap, Uα ∩Uβ, then the fα’s patch and
yield a bundle map between ξ1 and ξ2. Now, on Uα ∩ Uβ,

ϕα ◦ ϕ−1
β
(b, x) = (b, gαβ(b)(x))

yields
ϕ−1
β
(b, x) = ϕ−1

α
(b, gαβ(b)(x)).

We need to show that for every z ∈ Uα ∩ Uβ,

fα(z) = ϕ�
α

−1(b, ρα(b)(x)) = ϕ�
β

−1(b, ρβ(b)(x
�)) = fβ(z),

where ϕα(z) = (b, x) and ϕβ(z) = (b, x�).

From z = ϕ−1
β
(b, x�) = ϕ−1

α
(b, gαβ(b)(x�)), we get

x = gαβ(b)(x
�).

We also have
ϕ�
β

−1(b, ρβ(b)(x
�)) = ϕ�

α

−1(b, g�
αβ
(b)(ρβ(b)(x

�)))

and since g�
αβ
(b)ρβ(b) = ρα(b)gαβ(b) and x = gαβ(b)(x�) we get

ϕ�
β

−1(b, ρβ(b)(x
�)) = ϕ�

α

−1(b, ρα(b)(gαβ(b))(x
�)) = ϕ�

α

−1(b, ρα(b)(x)),

as desired. Therefore, the fα’s patch to yield a bundle map, f , with respect to the family
of maps, ρα : Uα → G. The map f is bijective because it is an isomorphism on fibres but it
remains to show that it is a diffeomorphism. This is a local matter and as the ϕα and ϕ�

α

are diffeomorphisms, it suffices to show that the map, �fα : Uα × F −→ Uα × F , given by

(b, x) �→ (b, ρα(b)(x)).

is a diffeomorphism. For this, observe that in local coordinates, the Jacobian matrix of this
map is of the form

J =

�
I 0
C J(ρα(b))

�
,

where I is the identity matrix and J(ρα(b)) is the Jacobian matrix of ρα(b). Since ρα(b)
is a diffeomorphism, det(J) �= 0 and by the Inverse Function Theorem, the map �fα is a
diffeomorphism, as desired.
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Remark: If in Proposition 7.2, ξ1 = (E1, π1, B1, F,G) and ξ2 = (E2, π2, B2, F,G) are two
bundles over different bases and if we have a diffeomorphism, fB : B1 → B2, and the condi-
tions

g�
αβ
(fB(b)) = ρα(b)gαβ(b)ρβ(b)

−1, for all b ∈ Uα ∩ Uβ

hold, then there is a bundle isomorphism, (fB, fE) between ξ1 and ξ2.

It follows from Proposition 7.1 and Proposition 7.2 that two bundles over the same base
are equivalent iff they are isomorphic, a very useful fact. Actually, we can use the proof of
Proposition 7.2 to show that any bundle morphism, f : ξ1 → ξ2, between two fibre bundles
over the same base, B, is a bundle isomorphism. Because a bundle morphism, f , as above
is fibre preserving, f is bijective but it is not obvious that its inverse is smooth.

Proposition 7.3 Any bundle morphism, f : ξ1 → ξ2, between two fibre bundles over the
same base, B, is an isomorphism.

Proof . Since f is bijective, this is a local matter and it is enough to prove that each,
�fα : Uα × F −→ Uα × F , is a diffeomorphism, since f can be written as

f = ϕ�
α

−1 ◦ �fα ◦ ϕα,

with
�fα(b, x) = (b, ρα(b)(x)).

However, the end of the proof of Proposition 7.2 shows that �fα is a diffeomorphism.

Given a fibre bundle, ξ = (E, π, B, F,G), we observed that the family, g = (gαβ), of
transition maps, gαβ : Uα ∩ Uβ → G, induced by a trivializing family, ϕ = (ϕα)α∈I , relative
to the open cover, U = (Uα)α∈I , for B satisfies the cocycle condition,

gαβ(b)gβγ(b) = gαγ(b),

for all α, β, γ such that Uα∩Uβ∩Uγ �= ∅ and all b ∈ Uα∩Uβ∩Uγ. Without altering anything,
we may assume that gαβ is the (unique) function from ∅ to G when Uα∩Uβ = ∅. Then, we call
a family, g = (gαβ)(α,β)∈I×I , as above a U-cocycle, or simply, a cocycle. Remarkably, given
such a cocycle, g, relative to U , a fibre bundle, ξg, over B with fibre, F , and structure group,
G, having g as family of transition functions, can be constructed. In view of Proposition 7.1,
we say that two cocycles, g = (gαβ)(α,β)∈I×I and g� = (gαβ)(α,β)∈I×I , are equivalent if there is
a family, (ρα)α∈I , of smooth maps, ρα : Uα → G, such that

g�
αβ
(b) = ρα(b)gαβ(b)ρβ(b)

−1, for all b ∈ Uα ∩ Uβ.

Theorem 7.4 Given two smooth manifolds, B and F , a Lie group, G, acting effectively
on F , an open cover, U = (Uα)α∈I , of B, and a cocycle, g = (gαβ)(α,β)∈I×I , there is a
fibre bundle, ξg = (E, π, B, F,G), whose transition maps are the maps in the cocycle, g.
Furthermore, if g and g� are equivalent cocycles, then ξg and ξg� are isomorphic.
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Proof sketch. First, we define the space, Z, as the disjoint sum

Z =
�

α∈I
Uα × F.

We define the relation, �, on Z ×Z, as follows: For all (b, x) ∈ Uβ ×F and (b, y) ∈ Uα ×F ,
if Uα ∩ Uβ �= ∅,

(b, x) � (b, y) iff y = gαβ(b)(x).

We let E = Z/ �, and we give E the largest topology such that the injections,
ηα : Uα×F → Z, are smooth. The cocycle condition insures that � is indeed an equivalence
relation. We define π : E → B by π([b, x]) = b. If p : Z → E is the the quotient map, observe
that the maps, p ◦ ηα : Uα × F → E, are injective, and that

π ◦ p ◦ ηα(b, x) = b.

Thus,
p ◦ ηα : Uα × F → π−1(Uα)

is a bijection, and we define the trivializing maps by setting

ϕα = (p ◦ ηα)−1.

It is easily verified that the corresponding transition functions are the original gαβ. There are
some details to check. A complete proof (the only one we could find!) is given in Steenrod
[141], Part I, Section 3, Theorem 3.2. The fact that ξg and ξg� are equivalent when g and
g� are equivalent follows from Proposition 7.2 (see Steenrod [141], Part I, Section 2, Lemma
2.10).

Remark: (The following paragraph is intended for readers familiar with Čech cohomology.)
Obviously, if we start with a fibre bundle, ξ = (E, π, B, F,G), whose transition maps are
the cocycle, g = (gαβ), and form the fibre bundle, ξg, the bundles ξ and ξg are equivalent.
This leads to a characterization of the set of equivalence classes of fibre bundles over a base
space, B, as the cohomology set , Ȟ1(B,G). In the present case, the sheaf, G, is defined such
that Γ(U,G) is the group of smooth maps from the open subset, U , of B to the Lie group,
G. Since G is not abelian, the coboundary maps have to be interpreted multiplicatively. If
we define the sets of cochains, Ck(U ,G), so that

C0(U ,G) =
�

α

G(Uα), C1(U ,G) =
�

α<β

G(Uα ∩ Uβ), C2(U ,G) =
�

α<β<γ

G(Uα ∩ Uβ ∩ Uγ),

etc., then it is natural to define,

δ0 : C
0(U ,G) → C1(U ,G),

by
(δ0g)αβ = g−1

α
gβ,
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for any g = (gα), with gα ∈ Γ(Uα,G). As to

δ1 : C
1(U ,G) → C2(U ,G),

since the cocycle condition in the usual case is

gαβ + gβγ = gαγ,

we set
(δ1g)αβγ = gαβgβγg

−1
αγ
,

for any g = (gαβ), with gαβ ∈ Γ(Uα ∩ Uβ,G). Note that a cocycle, g = (gαβ), is indeed an
element of Z1(U ,G), and the condition for being in the kernel of

δ1 : C
1(U ,G) → C2(U ,G)

is the cocycle condition,
gαβ(b)gβγ(b) = gαγ(b),

for all b ∈ Uα ∩ Uβ ∩ Uγ. In the commutative case, two cocycles, g and g�, are equivalent if
their difference is a boundary, which can be stated as

g�
αβ

+ ρβ = gαβ + ρα = ρα + gαβ,

where ρα ∈ Γ(Uα,G), for all α ∈ I. In the present case, two cocycles, g and g�, are equivalent
iff there is a family, (ρα)α∈I , with ρα ∈ Γ(Uα,G), such that

g�
αβ
(b) = ρα(b)gαβ(b)ρβ(b)

−1,

for all b ∈ Uα ∩ Uβ. This is the same condition of equivalence defined earlier. Thus, it is
easily seen that if g, h ∈ Z1(U ,G), then ξg and ξh are equivalent iff g and h correspond to
the same element of the cohomology set, Ȟ1(U ,G). As usual, Ȟ1(B,G) is defined as the
direct limit of the directed system of sets, Ȟ1(U ,G), over the preordered directed family of
open covers. For details, see Hirzebruch [77], Section 3.1. In summary, there is a bijection
between the equivalence classes of fibre bundles over B (with fibre F and structure group G)
and the cohomology set, Ȟ1(B,G). In the case of line bundles, it turns out that Ȟ1(B,G) is
in fact a group.

As an application of Theorem 7.4, we define the notion of pullback (or induced) bundle.
Say ξ = (E, π, B, F,G) is a fibre bundle and assume we have a smooth map, f : N → B. We
seek a bundle, f ∗ξ, over N , together with a bundle map, (f ∗, f) : f ∗ξ → ξ,

f ∗E
f
∗
��

π
∗

��

E

π

��
N

f

�� B
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where, in fact, f ∗E is a pullback in the categorical sense. This means that for any other
bundle, ξ�, over N and any bundle map,

E � f
�
��

π
�

��

E

π

��
N

f

�� B,

there is a unique bundle map, (�f �, id) : ξ� → f ∗ξ, so that (f �, f) = (f ∗, f) ◦ (�f �, id). Thus,
there is an isomorphism (natural),

Hom(ξ�, ξ) ∼= Hom(ξ,� f ∗ξ).

As a consequence, by Proposition 7.3, for any bundle map betwen ξ� and ξ,

E �

π
�

��

f
�
�� E

π

��
N

f

�� B,

there is an isomorphism, ξ� ∼= f ∗ξ.

The bundle, f ∗ξ, can be constructed as follows: Pick any open cover, (Uα), of B, then
(f−1(Uα)) is an open cover of N and check that if (gαβ) is a cocycle for ξ, then the maps,
gαβ ◦ f : f−1(Uα) ∩ f−1(Uβ) → G, satisfy the cocycle conditions. Then, f ∗ξ is the bundle
defined by the cocycle, (gαβ ◦ f). We leave as an exercise to show that the pullback bundle,
f ∗ξ, can be defined explicitly if we set

f ∗E = {(n, e) ∈ N × E | f(n) = π(e)},

π∗ = pr1 and f ∗ = pr2. For any trivialization, ϕα : π−1(Uα) → Uα × F , of ξ we have

(π∗)−1(f−1(Uα)) = {(n, e) ∈ N × E | n ∈ f−1(Uα), e ∈ π−1(f(n))},

and so, we have a bijection, �ϕα : (π∗)−1(f−1(Uα)) → f−1(Uα)× F , given by

�ϕα(n, e) = (n, pr2(ϕα(e))).

By giving f ∗E the smallest topology that makes each �ϕα a diffeomorphism, �ϕα, is a trivial-
ization of f ∗ξ over f−1(Uα) and f ∗ξ is a smooth bundle. Note that the fibre of f ∗ξ over a
point, n ∈ N , is isomorphic to the fibre, π−1(f(n)), of ξ over f(n). If g : M → N is another
smooth map of manifolds, it is easy to check that

(f ◦ g)∗ξ = g∗(f ∗ξ).



238 CHAPTER 7. BUNDLES, RIEMANNIAN METRICS, HOMOGENEOUS SPACES

Given a bundle, ξ = (E, π, B, F,G), and a submanifold, N , of B, we define the restriction
of ξ to N as the bundle, ξ � N = (π−1(N), π � π−1(N), B, F,G).

Experience shows that most objects of interest in geometry (vector fields, differential
forms, etc.) arise as sections of certain bundles. Furthermore, deciding whether or not a
bundle is trivial often reduces to the existence of a (global) section. Thus, we define the
important concept of a section right away.

Definition 7.5 Given a fibre bundle, ξ = (E, π, B, F,G), a smooth section of ξ is a smooth
map, s : B → E, so that π ◦ s = idB. Given an open subset, U , of B, a (smooth) section of
ξ over U is a smooth map, s : U → E, so that π ◦ s(b) = b, for all b ∈ U ; we say that s is
a local section of ξ. The set of all sections over U is denoted Γ(U, ξ) and Γ(B, ξ) (for short,
Γ(ξ)) is the set of global sections of ξ.

Here is an observation that proves useful for constructing global sections. Let s : B → E
be a global section of a bundle, ξ. For every trivialization, ϕα : π−1(Uα) → Uα × F , let
sα : Uα → E and σα : Uα → F be given by

sα = s � Uα and σα = pr2 ◦ ϕα ◦ sα,

so that
sα(b) = ϕ−1

α
(b, σα(b)).

Obviously, π ◦ sα = id, so sα is a local section of ξ and σα is a function, σα : Uα → F . We
claim that on overlaps, we have

σα(b) = gαβ(b)σβ(b).

Indeed, recall that
ϕα ◦ ϕ−1

β
(b, x) = (b, gαβ(b)x),

for all b ∈ Uα ∩ Uβ and all x ∈ F and as sα = s � Uα and sβ = s � Uβ, sα and sβ agree on
Uα ∩ Uβ. Consequently, from

sα(b) = ϕ−1
α
(b, σα(b)) and sβ(b) = ϕ−1

β
(b, σβ(b)),

we get
ϕ−1
α
(b, σα(b)) = sα(b) = sβ(b) = ϕ−1

β
(b, σβ(b)) = ϕ−1

α
(b, gαβ(b)σβ(b)),

which implies σα(b) = gαβ(b)σβ(b), as claimed.

Conversely, assume that we have a collection of functions, σα : Uα → F , satisfying

σα(b) = gαβ(b)σβ(b)

on overlaps. Let sα : Uα → E be given by

sα(b) = ϕ−1
α
(b, σα(b)).
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Each sα is a local section and we claim that these sections agree on overlaps, so they patch
and define a global section, s. We need to show that

sα(b) = ϕ−1
α
(b, σα(b)) = ϕ−1

β
(b, σβ(b)) = sβ(b),

for b ∈ Uα ∩ Uβ, that is,
(b, σα(b)) = ϕα ◦ ϕ−1

β
(b, σβ(b)),

and since ϕα ◦ ϕ−1
β
(b, σβ(b)) = (b, gαβ(b)σβ(b)) and by hypothesis, σα(b) = gαβ(b)σβ(b), our

equation sα(b) = sβ(b) is verified.

There are two particularly interesting special cases of fibre bundles:

(1) Vector bundles , which are fibre bundles for which the typical fibre is a finite-dimensional
vector space, V , and the structure group is a subgroup of the group of linear isomor-
phisms (GL(n,R) or GL(n,C), where n = dimV ).

(2) Principal fibre bundles , which are fibre bundles for which the fibre, F , is equal to the
structure group, G, with G acting on itself by left translation.

First, we discuss vector bundles.

7.2 Vector Bundles

Given a real vector space, V , we denote by GL(V ) (or Aut(V )) the vector space of linear
invertible maps from V to V . If V has dimension n, then GL(V ) has dimension n2. Obviously,
GL(V ) is isomorphic to GL(n,R), so we often write GL(n,R) instead of GL(V ) but this may
be slightly confusing if V is the dual space, W ∗ of some other space, W . If V is a complex
vector space, we also denote by GL(V ) (or Aut(V )) the vector space of linear invertible maps
from V to V but this time, GL(V ) is isomorphic to GL(n,C), so we often write GL(n,C)
instead of GL(V ).

Definition 7.6 A rank n real smooth vector bundle with fibre V is a tuple, ξ = (E, π, B, V ),
such that (E, π, B, V,GL(V )) is a smooth fibre bundle, the fibre, V , is a real vector space of
dimension n and the following conditions hold:

(a) For every b ∈ B, the fibre, π−1(b), is an n-dimensional (real) vector space.

(b) For every trivialization, ϕα : π−1(Uα) → Uα×V , for every b ∈ Uα, the restriction of ϕα

to the fibre, π−1(b), is a linear isomorphism, π−1(b) −→ V .

A rank n complex smooth vector bundle with fibre V is a tuple, ξ = (E, π, B, V ), such
that (E, π, B, V,GL(V )) is a smooth fibre bundle such that the fibre, V , is an n-dimensional
complex vector space (viewed as a real smooth manifold) and conditions (a) and (b) above
hold (for complex vector spaces). When n = 1, a vector bundle is called a line bundle.
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The trivial vector bundle, E = B × V , is often denoted �V . When V = R
k, we also

use the notation �k. Given a (smooth) manifold, M , of dimension n, the tangent bundle,
TM , and the cotangent bundle, T ∗M , are rank n vector bundles. Indeed, in Section 3.3, we
defined trivialization maps (denoted τU) for TM . Let us compute the transition functions
for the tangent bundle, TM , where M is a smooth manifold of dimension n. Recall from
Definition 3.12 that for every p ∈ M , the tangent space, TpM , consists of all equivalence
classes of triples, (U,ϕ, x), where (U,ϕ) is a chart with p ∈ U , x ∈ R

n, and the equivalence
relation on triples is given by

(U,ϕ, x) ≡ (V,ψ, y) iff (ψ ◦ ϕ−1)�
ϕ(p)(x) = y.

We have a natural isomorphism, θU,ϕ,p : Rn → TpM , between R
n and TpM given by

θU,ϕ,p : x �→ [(U,ϕ, x)], x ∈ R
n.

Observe that for any two overlapping charts, (U,ϕ) and (V,ψ),

θ−1
V,ψ,p

◦ θU,ϕ,p = (ψ ◦ ϕ−1)�
ϕ(p).

We let TM be the disjoint union,

TM =
�

p∈M
TpM,

define the projection, π : TM → M , so that π(v) = p if v ∈ TpM , and we give TM the
weakest topology that makes the functions, �ϕ : π−1(U) → R

2n, given by

�ϕ(v) = (ϕ ◦ π(v), θ−1
U,ϕ,π(v)(v)),

continuous, where (U,ϕ) is any chart of M . Each function, �ϕ : π−1(U) → ϕ(U) × R
n is a

homeomorphism and given any two overlapping charts, (U,ϕ) and (V,ψ), as
θ−1
V,ψ,p

◦ θU,ϕ,p = (ψ ◦ ϕ−1)�
ϕ(p), the transition map,

�ψ ◦ �ϕ−1 : ϕ(U ∩ V )× R
n −→ ψ(U ∩ V )× R

n,

is given by

�ψ ◦ �ϕ−1(z, x) = (ψ ◦ ϕ−1(z), (ψ ◦ ϕ−1)�
z
(x)), (z, x) ∈ ϕ(U ∩ V )× R

n.

It is clear that �ψ ◦ �ϕ−1 is smooth. Moreover, the bijection,

τU : π
−1(U) → U × R

n,

given by
τU(v) = (π(v), θ−1

U,ϕ,π(v)(v))
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satisfies pr1 ◦ τU = π on π−1(U), is a linear isomorphism restricted to fibres and so, it is a
trivialization for TM . For any two overlapping charts, (Uα,ϕα) and (Uβ,ϕβ), the transition
function, gαβ : Uα ∩ Uβ → GL(n,R), is given by

gαβ(p)(x) = (ϕα ◦ ϕ−1
β
)�
ϕ(p)(x).

We can also compute trivialization maps for T ∗M . This time, T ∗M is the disjoint union,

T ∗M =
�

p∈M
T ∗
p
M,

and π : T ∗M → M is given by π(ω) = p if ω ∈ T ∗
p
M , where T ∗

p
M is the dual of the tangent

space, TpM . For each chart, (U,ϕ), by dualizing the map, θU,ϕ,p : Rn → Tp(M), we obtain an
isomorphism, θ�

U,ϕ,p
: T ∗

p
M → (Rn)∗. Composing θ�

U,ϕ,p
with the isomorphism, ι : (Rn)∗ → R

n

(induced by the canonical basis (e1, . . . , en) of Rn and its dual basis), we get an isomorphism,
θ∗
U,ϕ,p

= ι ◦ θ�
U,ϕ,p

: T ∗
p
M → R

n. Then, define the bijection,

�ϕ∗ : π−1(U) → ϕ(U)× R
n ⊆ R

2n,

by
�ϕ∗(ω) = (ϕ ◦ π(ω), θ∗

U,ϕ,π(ω)(ω)),

with ω ∈ π−1(U). We give T ∗M the weakest topology that makes the functions �ϕ∗ continuous
and then each function, �ϕ∗, is a homeomorphism. Given any two overlapping charts, (U,ϕ)
and (V,ψ), as

θ−1
V,ψ,p

◦ θU,ϕ,p = (ψ ◦ ϕ−1)�
ϕ(p),

by dualization we get

θ�
U,ϕ,p

◦ (θ�
V,ψ,p

)−1 = θ�
U,ϕ,p

◦ (θ−1
V,ψ,p

)� = ((ψ ◦ ϕ−1)�
ϕ(p))

�,

then
θ�
V,ψ,p

◦ (θ�
U,ϕ,p

)−1 = (((ψ ◦ ϕ−1)�
ϕ(p))

�)−1,

and so
ι ◦ θ�

V,ψ,p
◦ (θ�

U,ϕ,p
)−1 ◦ ι−1 = ι ◦ (((ψ ◦ ϕ−1)�

ϕ(p))
�)−1 ◦ ι−1,

that is,
θ∗
V,ψ,p

◦ (θ∗
U,ϕ,p

)−1 = ι ◦ (((ψ ◦ ϕ−1)�
ϕ(p))

�)−1 ◦ ι−1.

Consequently, the transition map,

�ψ∗ ◦ (�ϕ∗)−1 : ϕ(U ∩ V )× R
n −→ ψ(U ∩ V )× R

n,

is given by

�ψ∗ ◦ (�ϕ∗)−1(z, x) = (ψ ◦ ϕ−1(z), ι ◦ (((ψ ◦ ϕ−1)�
z
)�)−1 ◦ ι−1(x)), (z, x) ∈ ϕ(U ∩ V )× R

n.
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If we view (ψ ◦ ϕ−1)�
z
as a matrix, then we can forget ι and the second component of

�ψ∗ ◦ (�ϕ∗)−1(z, x) is (((ψ ◦ ϕ−1)�
z
)�)−1x.

We also have trivialization maps, τ ∗
U
: π−1(U) → U × (Rn)∗, for T ∗M given by

τ ∗
U
(ω) = (π(ω), θ�

U,ϕ,π(ω)(ω)),

for all ω ∈ π−1(U). The transition function, g∗
αβ

: Uα ∩ Uβ → GL(n,R), is given by

g∗
αβ
(p)(η) = τ ∗

Uα,p
◦ (τ ∗

Uβ ,p
)−1(η)

= θ�
Uα,ϕα,π(η) ◦ (θ

�
Uβ ,ϕβ ,π(η)

)−1(η)

= ((θ−1
Uα,ϕα,π(η)

◦ θUβ ,ϕβ ,π(η))
�)−1(η)

= (((ϕα ◦ ϕ−1
β
)�
ϕ(p))

�)−1(η),

with η ∈ (Rn)∗. Also note that GL(n,R) should really be GL((Rn)∗), but GL((Rn)∗) is
isomorphic to GL(n,R). We conclude that

g∗
αβ
(p) = (gαβ(p)

�)−1, for every p ∈ M.

This is a general property of dual bundles, see Property (f) in Section 7.3.

Maps of vector bundles are maps of fibre bundles such that the isomorphisms between
fibres are linear.

Definition 7.7 Given two vector bundles, ξ1 = (E1, π1, B1, V ) and ξ2 = (E2, π2, B2, V ),
with the same typical fibre, V , a bundle map (or bundle morphism), f : ξ1 → ξ2, is a pair,
f = (fE, fB), of smooth maps, fE : E1 → E2 and fB : B1 → B2, such that

(a) The following diagram commutes:

E1

π1

��

fE �� E2

π2

��
B1

fB

�� B2

(b) For every b ∈ B1, the map of fibres,

fE � π−1
1 (b) : π−1

1 (b) → π−1
2 (fB(b)),

is a bijective linear map.

A bundle map isomorphism, f : ξ1 → ξ2, is defined as in Definition 7.2. Given two vector
bundles, ξ1 = (E1, π1, B, V ) and ξ2 = (E2, π2, B, V ), over the same base space, B, we require
fB = id.
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Remark: Some authors do not require the preservation of fibres, that is, the map

fE � π−1
1 (b) : π−1

1 (b) → π−1
2 (fB(b))

is simply a linear map. It is automatically bijective for bundle isomorphisms.

Note that Definition 7.7 does not include condition (b) of Definition 7.3. However,
because the restrictions of the maps ϕα, ϕ�

β
and f to the fibres are linear isomorphisms,

it turns out that condition (b) (of Definition 7.3) does hold. Indeed, if fB(Uα) ⊆ Vβ, then

ϕ�
β
◦ f ◦ ϕ−1

α
: Uα × V −→ Vβ × V

is a smooth map and, for every b ∈ B, its restriction to {b} × V is a linear isomorphism
between {b}× V and {fB(b)}× V . Therefore, there is a smooth map, ρα : Uα → GL(n,R),
so that

ϕ�
β
◦ f ◦ ϕ−1

α
(b, x) = (fB(b), ρα(b)(x))

and a vector bundle map is a fibre bundle map.

A holomorphic vector bundle is a fibre bundle where E,B are complex manifolds, V is a
complex vector space of dimension n, the map π is holomorphic, the ϕα are biholomorphic,
and the transition functions, gαβ, are holomorphic. When n = 1, a holomorphic vector
bundle is called a holomorphic line bundle.

Definition 7.4 also applies to vector bundles (just replace G by GL(n,R) or GL(n,C))
and defines the notion of equivalence of vector bundles over B. Since vector bundle maps
are fibre bundle maps, Propositions 7.1 and 7.2 immediately yield

Proposition 7.5 Two vector bundles, ξ1 = (E1, π1, B, V ) and ξ2 = (E2, π2, B, V ), over the
same base space, B, are equivalent iff they are isomorphic.

Since a vector bundle map is a fibre bundle map, Proposition 7.3 also yields the useful
fact:

Proposition 7.6 Any vector bundle map, f : ξ1 → ξ2, between two vector bundles over the
same base, B, is an isomorphism.

Theorem 7.4 also holds for vector bundles and yields a technique for constructing new
vector bundles over some base, B.

Theorem 7.7 Given a smooth manifold, B, an n-dimensional (real, resp. complex) vector
space, V , an open cover, U = (Uα)α∈I of B, and a cocycle, g = (gαβ)(α,β)∈I×I (with
gαβ : Uα ∩ Uβ → GL(n,R), resp. gαβ : Uα ∩ Uβ → GL(n,C)), there is a vector bundle,
ξg = (E, π, B, V ), whose transition maps are the maps in the cocycle, g. Furthermore, if g
and g� are equivalent cocycles, then ξg and ξg� are equivalent.
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Observe that a coycle, g = (gαβ)(α,β)∈I×I , is given by a family of matrices in GL(n,R)
(resp. GL(n,C)).

A vector bundle, ξ, always has a global section, namely the zero section, which assigns
the element 0 ∈ π−1(b), to every b ∈ B. A global section, s, is a non-zero section iff s(b) �= 0
for all b ∈ B. It is usually difficult to decide whether a bundle has a nonzero section.
This question is related to the nontriviality of the bundle and there is a useful test for
triviality. Assume ξ is a trivial rank n vector bundle. Then, there is a bundle isomorphism,
f : B × V → ξ. For every b ∈ B, we know that f(b,−) is a linear isomorphism, so for any
choice of a basis, (e1, . . . , en) of V , we get a basis, (f(b, e1), . . . , f(b, en)), of the fibre, π−1(b).
Thus, we have n global sections, s1 = f(−, e1), . . . , sn = f(−, en), such that (s1(b), . . . , sn(b))
forms a basis of the fibre, π−1(b), for every b ∈ B.

Definition 7.8 Let ξ = (E, π, B, V ) be a rank n vector bundle. For any open subset, U ⊆ B,
an n-tuple of local sections, (s1, . . . , sn), over U if called a frame over U iff (s1(b), . . . , sn(b))
is a basis of the fibre, π−1(b), for every b ∈ U . If U = B, then the si are global sections and
(s1, . . . , sn) is called a frame (of ξ).

The notion of a frame is due to Élie Cartan who (after Darboux) made extensive use of
them under the name ofmoving frame (and themoving frame method). Cartan’s terminology
is intuitively clear: As a point, b, moves in U , the frame, (s1(b), . . . , sn(b)), moves from fibre
to fibre. Physicists refer to a frame as a choice of local gauge.

The converse of the property established just before Definition 7.8 is also true.

Proposition 7.8 A rank n vector bundle, ξ, is trivial iff it possesses a frame of global
sections.

Proof . We only need to prove that if ξ has a frame, (s1, . . . , sn), then it is trivial. Pick a
basis, (e1, . . . , en), of V and define the map, f : B × V → ξ, as follows:

f(b, v) =
n�

i=1

visi(b),

where v =
�

n

i=1 viei. Clearly, f is bijective on fibres, smooth, and a map of vector bundles.
By Proposition 7.6, the bundle map, f , is an isomorphism.

As an illustration of Proposition 7.8 we can prove that the tangent bundle, TS1, of the
circle, is trivial. Indeed, we can find a section that is everywhere nonzero, i.e. a non-vanishing
vector field, namely

s(cos θ, sin θ) = (− sin θ, cos θ).

The reader should try proving that TS3 is also trivial (use the quaternions). However, TS2

is nontrivial, although this not so easy to prove. More generally, it can be shown that TSn is
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nontrivial for all even n ≥ 2. It can even be shown that S1, S3 and S7 are the only spheres
whose tangent bundle is trivial. This is a rather deep theorem and its proof is hard.

Remark: A manifold, M , such that its tangent bundle, TM , is trivial is called parallelizable.

The above considerations show that if ξ is any rank n vector bundle, not necessarily
trivial, then for any local trivialization, ϕα : π−1(Uα) → Uα × V , there are always frames
over Uα. Indeed, for every choice of a basis, (e1, . . . , en), of the typical fibre, V , if we set

sα
i
(b) = ϕ−1

α
(b, ei), b ∈ Uα, 1 ≤ i ≤ n,

then (sα1 , . . . , s
α

n
) is a frame over Uα.

Given any two vector spaces, V and W , both of dimension n, we denote by Iso(V,W )
the space of all linear isomorphisms between V and W . The space of n-frames , F (V ), is the
set of bases of V . Since every basis, (v1, . . . , vn), of V is in one-to-one correspondence with
the map from R

n to V given by ei �→ vi, where (e1, . . . , en) is the canonical basis of Rn (so,
ei = (0, . . . , 1, . . . 0) with the 1 in the ith slot), we have an isomorphism,

F (V ) ∼= Iso(Rn, V ).

(The choice of a basis in V also yields an isomorphism, Iso(Rn, V ) ∼= GL(n,R), so
F (V ) ∼= GL(n,R).)

For any rank n vector bundle, ξ, we can form the frame bundle, F (ξ), by replacing the
fibre, π−1(b), over any b ∈ B by F (π−1(b)). In fact, F (ξ) can be constructed using Theorem
7.4. Indeed, identifying F (V ) with Iso(Rn, V ), the group GL(n,R) acts on F (V ) effectively
on the left via

A · v = v ◦ A−1.

(The only reason for using A−1 instead of A is that we want a left action.) The resulting
bundle has typical fibre, F (V ) ∼= GL(n,R), and turns out to be a principal bundle. We will
take a closer look at principal bundles in Section 7.5.

We conclude this section with an example of a bundle that plays an important role in
algebraic geometry, the canonical line bundle on RP

n. Let HR

n
⊆ RP

n ×R
n+1 be the subset,

HR

n
= {(L, v) ∈ RP

n × R
n+1 | v ∈ L},

where RP
n is viewed as the set of lines, L, in R

n+1 through 0, or more explicitly,

HR

n
= {((x0 : · · · : xn),λ(x0, . . . , xn)) | (x0 : · · · : xn) ∈ RP

n, λ ∈ R}.

Geometrically, HR

n
consists of the set of lines, [(x0, . . . , xn)], associated with points,

(x0 : · · · : xn), of RP
n. If we consider the projection, π : HR

n
→ RP

n, of HR

n
onto RP

n, we see
that each fibre is isomorphic to R. We claim that HR

n
is a line bundle. For this, we exhibit

trivializations, leaving as an exercise the fact that HR

n
is a manifold.
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Recall the open cover, U0, . . . , Un, of RP
n, where

Ui = {(x0 : · · · : xn) ∈ RP
n | xi �= 0}.

Then, the maps, ϕi : π−1(Ui) → Ui × R, given by

ϕi((x0 : · · · : xn),λ(x0, . . . , xn)) = ((x0 : · · · : xn),λxi)

are trivializations. The transition function, gij : Ui ∩ Uj → GL(1,R), is given by

gij(x0 : · · · : xn)(u) =
xi

xj

u,

where we identify GL(1,R) and R
∗ = R− {0}.

Interestingly, the bundle HR

n
is nontrivial for all n ≥ 1. For this, by Proposition 7.8 and

since HR

n
is a line bundle, it suffices to prove that every global section vanishes at some point.

So, let σ be any section of HR

n
. Composing the projection, p : Sn −→ RP

n, with σ, we get a
smooth function, s = σ ◦ p : Sn −→ HR

n
, and we have

s(x) = (p(x), f(x)x),

for every x ∈ Sn, where f : Sn → R is a smooth function. Moreover, f satisfies

f(−x) = −f(x),

since s(−x) = s(x). As Sn is connected and f is continuous, by the intermediate value
theorem, there is some x such that f(x) = 0, and thus, σ vanishes, as desired.

The reader should look for a geometric representation of HR

1 . It turns out that HR

1 is
an open Möbius strip, that is, a Möbius strip with its boundary deleted (see Milnor and
Stasheff [110], Chapter 2). There is also a complex version of the canonical line bundle on
CP

n, with
Hn = {(L, v) ∈ CP

n × C
n+1 | v ∈ L},

where CP
n is viewed as the set of lines, L, in C

n+1 through 0. These bundles are also
nontrivial. Furthermore, unlike the real case, the dual bundle, H∗

n
, is not isomorphic to Hn.

Indeed, H∗
n
turns out to have nonzero global holomorphic sections!

7.3 Operations on Vector Bundles

Because the fibres of a vector bundle are vector spaces all isomorphic to some given space, V ,
we can perform operations on vector bundles that extend familiar operations on vector spaces,
such as: direct sum, tensor product, (linear) function space, and dual space. Basically, the
same operation is applied on fibres. It is usually more convenient to define operations on
vector bundles in terms of operations on cocycles, using Theorem 7.7.
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(a) (Whitney Sum or Direct Sum)

If ξ = (E, π, B, V ) is a rank m vector bundle and ξ� = (E �, π�, B,W ) is a rank n vector
bundle, both over the same base, B, then their Whitney sum, ξ⊕ξ�, is the rank (m+n)
vector bundle whose fibre over any b ∈ B is the direct sum, Eb⊕E �

b
, that is, the vector

bundle with typical fibre V ⊕W (given by Theorem 7.7) specified by the cocycle whose
matrices are �

gαβ(b) 0
0 g�

αβ
(b)

�
, b ∈ Uα ∩ Uβ.

(b) (Tensor Product)

If ξ = (E, π, B, V ) is a rank m vector bundle and ξ� = (E �, π�, B,W ) is a rank n vector
bundle, both over the same base, B, then their tensor product, ξ ⊗ ξ�, is the rank mn
vector bundle whose fibre over any b ∈ B is the tensor product, Eb ⊗ E �

b
, that is, the

vector bundle with typical fibre V ⊗W (given by Theorem 7.7) specified by the cocycle
whose matrices are

gαβ(b)⊗ g�
αβ
(b), b ∈ Uα ∩ Uβ.

(Here, we identify a matrix with the corresponding linear map.)

(c) (Tensor Power)

If ξ = (E, π, B, V ) is a rank m vector bundle, then for any k ≥ 0, we can define the
tensor power bundle, ξ⊗k, whose fibre over any b ∈ ξ is the tensor power, E⊗k

b
and with

typical fibre V ⊗k. (When k = 0, the fibre is R or C). The bundle ξ⊗k is determined
by the cocycle

g⊗k

αβ
(b), b ∈ Uα ∩ Uβ.

(d) (Exterior Power)

If ξ = (E, π, B, V ) is a rank m vector bundle, then for any k ≥ 0, we can define the
exterior power bundle,

�
k ξ, whose fibre over any b ∈ ξ is the exterior power,

�
k Eb

and with typical fibre
�

k V . The bundle
�

k ξ is determined by the cocycle

k�
gαβ(b), b ∈ Uα ∩ Uβ.

Using (a), we also have the exterior algebra bundle,
�
ξ =

�
m

k=0

�
k ξ. (When k = 0,

the fibre is R or C).

(e) (Symmetric Power) If ξ = (E, π, B, V ) is a rank m vector bundle, then for any k ≥ 0,
we can define the symmetric power bundle, Symk ξ, whose fibre over any b ∈ ξ is the
exterior power, Symk Eb and with typical fibre Symk V . (When k = 0, the fibre is R

or C). The bundle Symkξ is determined by the cocycle

Symk gαβ(b), b ∈ Uα ∩ Uβ.
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(f) (Dual Bundle) If ξ = (E, π, B, V ) is a rank m vector bundle, then its dual bundle, ξ∗,
is the rank m vector bundle whose fibre over any b ∈ B is the dual space, E∗

b
, that is,

the vector bundle with typical fibre V ∗ (given by Theorem 7.7) specified by the cocycle
whose matrices are

(gαβ(b)
�)−1, b ∈ Uα ∩ Uβ.

The reason for this seemingly complicated formula is this: For any trivialization,
ϕα : π−1(Uα) → Uα × V , for any b ∈ B, recall that the restriction, ϕα,b : π−1(b) → V ,
of ϕα to π−1(b) is a linear isomorphism. By dualization we get a map,
ϕ�
α,b

: V ∗ → (π−1(b))∗, and thus, ϕ∗
α,b

for ξ∗ is given by

ϕ∗
α,b

= (ϕ�
α,b
)−1 : (π−1(b))∗ → V ∗.

As g∗
αβ
(b) = ϕ∗

α,b
◦ (ϕ∗

β,b
)−1, we get

g∗
αβ
(b) = (ϕ�

α,b
)−1 ◦ ϕ�

β,b

= ((ϕ�
β,b
)−1 ◦ ϕ�

α,b
)−1

= (ϕ−1
β,b
)� ◦ ϕ�

α,b
)−1

= ((ϕα,b ◦ ϕ−1
β,b
)�)−1

= (gαβ(b)
�)−1,

as claimed.

(g) (Hom Bundle)

If ξ = (E, π, B, V ) is a rank m vector bundle and ξ� = (E �, π�, B,W ) is a rank n
vector bundle, both over the same base, B, then their Hom bundle, Hom(ξ, ξ�), is
the rank mn vector bundle whose fibre over any b ∈ B is Hom(Eb, E �

b
), that is, the

vector bundle with typical fibre Hom(V,W ). The transition functions of this bun-
dle are obtained as follows: For any trivializations, ϕα : π−1(Uα) → Uα × V and
ϕ�
α
: (π�)−1(Uα) → Uα×W , for any b ∈ B, recall that the restrictions, ϕα,b : π−1(b) → V

and ϕ�
α,b

: (π�)−1(b) → W are linear isomorphisms. Then, we have a linear isomorphism,
ϕHom
α,b

: Hom(π−1(b), (π�)−1(b)) −→ Hom(V,W ), given by

ϕHom
α,b

(f) = ϕ�
α,b

◦ f ◦ ϕ−1
α,b
, f ∈ Hom(π−1(b), (π�)−1(b)).

Then, gHom
αβ

(b) = ϕHom
α,b

◦ (ϕHom
β,b

)−1.

(h) (Tensor Bundle of type (r, s))

If ξ = (E, π, B, V ) is a rank m vector bundle, then for any r, s ≥ 0, we can define the
bundle, T r,s ξ, whose fibre over any b ∈ ξ is the tensor space T r,sEb and with typical
fibre T r,s V . The bundle T r,sξ is determined by the cocycle

g⊗
r

αβ
(b)⊗ ((gαβ(b)

�)−1)⊗s(b), b ∈ Uα ∩ Uβ.
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In view of the canonical isomorphism, Hom(V,W ) ∼= V ∗ ⊗ W , it is easy to show that
Hom(ξ, ξ�), is isomorphic to ξ∗ ⊗ ξ�. Similarly, ξ∗∗ is isomorphic to ξ. We also have the
isomorphism

T r,sξ ∼= ξ⊗r ⊗ (ξ∗)⊗s.

� Do not confuse the space of bundle morphisms, Hom(ξ, ξ�), with the Hom bundle,
Hom(ξ, ξ�). However, observe that Hom(ξ, ξ�) is the set of global sections of Hom(ξ, ξ�).

As an illustration of (d), consider the exterior power,
�

r T ∗M , where M is a manifold of
dimension n. We have trivialization maps, τ ∗

U
: π−1(U) → U ×

�
r(Rn)∗, for

�
r T ∗M given

by

τ ∗
U
(ω) = (π(ω),

r�
θ�
U,ϕ,π(ω)(ω)),

for all ω ∈ π−1(U). The transition function, g
�r

αβ
: Uα ∩ Uβ → GL(n,R), is given by

g
�r

αβ
(p)(ω) = (

r�
(((ϕα ◦ ϕ−1

β
)�
ϕ(p))

�)−1)(ω),

for all ω ∈ π−1(U). Consequently,

g
�r

αβ
(p) =

r�
(gαβ(p)

�)−1,

for every p ∈ M , a special case of (h).

For rank 1 vector bundles, that is, line bundles, it is easy to show that the set of equiv-
alence classes of line bundles over a base, B, forms a group, where the group operation is
⊗, the inverse is ∗ (dual) and the identity element is the trivial bundle. This is the Picard
group of B.

In general, the dual, E∗, of a bundle is not isomorphic to the original bundle, E. This is
because, V ∗ is not canonically isomorphic to V and to get a bundle isomorphism between ξ
and ξ∗, we need canonical isomorphisms between the fibres. However, if ξ is real, then (using
a partition of unity) ξ can be given a Euclidean metric and so, ξ and ξ∗ are isomorphic.

� It is not true in general that a complex vector bundle is isomorphic to its dual because
a Hermitian metric only induces a canonical isomorphism between E∗ and E, where E

is the conjugate of E, with scalar multiplication in E given by (z, w) �→ wz.

Remark: Given a real vector bundle, ξ, the complexification, ξC, of ξ is the complex vector
bundle defined by

ξC = ξ ⊗R �C,

where �C = B × C is the trivial complex line bundle. Given a complex vector bundle, ξ, by
viewing its fibre as a real vector space we obtain the real vector bundle, ξR. The following
facts can be shown:



250 CHAPTER 7. BUNDLES, RIEMANNIAN METRICS, HOMOGENEOUS SPACES

(1) For every real vector bundle, ξ,

(ξC)R ∼= ξ ⊕ ξ.

(2) For every complex vector bundle, ξ,

(ξR)C ∼= ξ ⊕ ξ∗.

The notion of subbundle is defined as follows:

Definition 7.9 Given two vector bundles, ξ = (E, π, B, V ) and ξ� = (E �, π�, B, V �), over the
same base, B, we say that ξ is a subbundle of ξ� iff E is a submanifold of E �, V is a subspace
of V � and for every b ∈ B, the fibre, π−1(b), is a subspace of the fibre, (π�)−1(b).

If ξ is a subbundle of ξ�, we can form the quotient bundle, ξ�/ξ, as the bundle over B
whose fibre at b ∈ B is the quotient space (π�)−1(b)/π−1(b). We leave it as an exercise
to define trivializations for ξ�/ξ. In particular, if N is a submanifold of M , then TN is a
subbundle of TM � N and the quotient bundle (TM � N)/TN is called the normal bundle
of N in M .

7.4 Metrics on Bundles, Riemannian Manifolds,
Reduction of Structure Groups, Orientation

Fortunately, the rich theory of vector spaces endowed with a Euclidean inner product can,
to a great extent, be lifted to vector bundles.

Definition 7.10 Given a (real) rank n vector bundle, ξ = (E, π, B, V ), we say that ξ is
Euclidean iff there is a family, (�−,−�b)b∈B, of inner products on each fibre, π−1(b), such
that �−,−�b depends smoothly on b, which means that for every trivializing map,
ϕα : π−1(Uα) → Uα × V , for every frame, (s1, . . . , sn), on Uα, the maps

b �→ �si(b), sj(b)�b, b ∈ Uα, 1 ≤ i, j ≤ n

are smooth. We say that �−,−� is a Euclidean metric (or Riemannian metric) on ξ. If ξ
is a complex rank n vector bundle, ξ = (E, π, B, V ), we say that ξ is Hermitian iff there is
a family, (�−,−�b)b∈B, of Hermitian inner products on each fibre, π−1(b), such that �−,−�b
depends smoothly on b. We say that �−,−� is a Hermitian metric on ξ. For any smooth
manifold, M , if TM is a Euclidean vector bundle, then we say that M is a Riemannian
manifold .



7.4. METRICS ON BUNDLES, REDUCTION, ORIENTATION 251

If M is a Riemannian manifold, the smoothness condition on the metric, {�−,−�p}p∈M ,
on TM , can be expressed a little more conveniently. If dim(M) = n, then for every chart,
(U,ϕ), since dϕ−1

ϕ(p) : R
n → TpM is a bijection for every p ∈ U , the n-tuple of vector fields,

(s1, . . . , sn), with si(p) = dϕ−1
ϕ(p)(ei), is a frame of TM over U , where (e1, . . . , en) is the

canonical basis of Rn. Since every vector field over U is a linear combination,
�

n

i=1 fisi, for
some smooth functions, fi : U → R, the condition of Definition 7.10 is equivalent to the fact
that the maps,

p �→ �dϕ−1
ϕ(p)(ei), dϕ

−1
ϕ(p)(ej)�p, p ∈ U, 1 ≤ i, j ≤ n,

are smooth. If we let x = ϕ(p), the above condition says that the maps,

x �→ �dϕ−1
x
(ei), dϕ

−1
x
(ej)�ϕ−1(x), x ∈ ϕ(U), 1 ≤ i, j ≤ n,

are smooth.

If M is a Riemannian manifold, the metric on TM is often denoted g = (gp)p∈M . In a
chart, (U,ϕ), using local coordinates, we often use the notation, g =

�
ij
gijdxi ⊗ dxj, or

simply, g =
�

ij
gijdxidxj, where

gij(p) =

��
∂

∂xi

�

p

,

�
∂

∂xj

�

p

�

p

.

For every p ∈ U , the matrix, (gij(p)), is symmetric, positive definite.

The standard Euclidean metric on R
n, namely,

g = dx2
1 + · · ·+ dx2

n
,

makes Rn into a Riemannian manifold. Then, every submanifold, M , of Rn inherits a metric
by restricting the Euclidean metric to M . For example, the sphere, Sn−1, inherits a metric
that makes Sn−1 into a Riemannian manifold. It is a good exercise to find the local expression
of this metric for S2 in polar coordinates.

A nontrivial example of a Riemannian manifold is the Poincaré upper half-space, namely,
the set H = {(x, y) ∈ R

2 | y > 0} equipped with the metric

g =
dx2 + dy2

y2
.

A way to obtain a metric on a manifold, N , is to pull-back the metric, g, on another man-
ifold, M , along a local diffeomorphism, ϕ : N → M . Recall that ϕ is a local diffeomorphism
iff

dϕp : TpN → Tϕ(p)M
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is a bijective linear map for every p ∈ N . Given any metric g on M , if ϕ is a local diffeo-
morphism, we define the pull-back metric, ϕ∗g, on N induced by g as follows: For all p ∈ N ,
for all u, v ∈ TpN ,

(ϕ∗g)p(u, v) = gϕ(p)(dϕp(u), dϕp(v)).

We need to check that (ϕ∗g)p is an inner product, which is very easy since dϕp is a linear
isomorphism. Our map, ϕ, between the two Riemannian manifolds (N,ϕ∗g) and (M, g) is a
local isometry, as defined below.

Definition 7.11 Given two Riemannian manifolds, (M1, g1) and (M2, g2), a local isometry
is a smooth map, ϕ : M1 → M2, such that dϕp : TpM1 → Tϕ(p)M2 is an isometry between the
Euclidean spaces (TpM1, (g1)p) and (Tϕ(p)M2, (g2)ϕ(p)), for every p ∈ M1, that is,

(g1)p(u, v) = (g2)ϕ(p)(dϕp(u), dϕp(v)),

for all u, v ∈ TpM1 or, equivalently, ϕ∗g2 = g1. Moreover, ϕ is an isometry iff it is a local
isometry and a diffeomorphism.

The isometries of a Riemannian manifold, (M, g), form a group, Isom(M, g), called the
isometry group of (M, g). An important theorem of Myers and Steenrod asserts that the
isometry group, Isom(M, g), is a Lie group.

Given a map, ϕ : M1 → M2, and a metric g1 on M1, in general, ϕ does not induce any
metric on M2. However, if ϕ has some extra properties, it does induce a metric on M2. This
is the case when M2 arises from M1 as a quotient induced by some group of isometries of
M1. For more on this, see Gallot, Hulin and Lafontaine [60], Chapter 2, Section 2.A.

Now, given a real (resp. complex) vector bundle, ξ, provided that B is a sufficiently nice
topological space, namely that B is paracompact (see Section 3.6), a Euclidean metric (resp.
Hermitian metric) exists on ξ. This is a consequence of the existence of partitions of unity
(see Theorem 3.26).

Theorem 7.9 Every real (resp. complex) vector bundle admits a Euclidean (resp. Hermi-
tian) metric. In particular, every smooth manifold admits a Riemannian metric.

Proof . Let (Uα) be a trivializing open cover for ξ and pick any frame, (sα1 , . . . , s
α

n
), over Uα.

For every b ∈ Uα, the basis, (sα1 (b), . . . , s
α

n
(b)) defines a Euclidean (resp. Hermitian) inner

product, �−,−�b, on the fibre π−1(b), by declaring (sα1 (b), . . . , s
α

n
(b)) orthonormal w.r.t. this

inner product. (For x =
�

n

i=1 xisαi (b) and y =
�

n

i=1 yis
α

i
(b), let �x, y�b =

�
n

i=1 xiyi, resp.
�x, y�b =

�
n

i=1 xiyi, in the complex case.) The �−,−�b (with b ∈ Uα) define a metric on
π−1(Uα), denote it �−,−�α. Now, using Theorem 3.26, glue these inner products using a
partition of unity, (fα), subordinate to (Uα), by setting

�x, y� =
�

α

fα�x, y�α.
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We verify immediately that �−,−� is a Euclidean (resp. Hermitian) metric on ξ.

The existence of metrics on vector bundles allows the so-called reduction of structure
group. Recall that the transition maps of a real (resp. complex) vector bundle, ξ, are
functions, gαβ : Uα ∩ Uβ → GL(n,R) (resp. GL(n,C)). Let GL+(n,R) be the subgroup
of GL(n,R) consisting of those matrices of positive determinant (resp. GL+(n,C) be the
subgroup of GL(n,C) consisting of those matrices of positive determinant).

Definition 7.12 For every real (resp. complex) vector bundle, ξ, if it is possible to find a
cocycle, g = (gαβ), for ξ with values in a subgroup, H, of GL(n,R) (resp. of GL(n,C)), then
we say that the structure group of ξ can be reduced to H. We say that ξ is orientable if its
structure group can be reduced to GL+(n,R) (resp. GL+(n,C)).

Proposition 7.10 (a) The structure group of a rank n real vector bundle, ξ, can be reduced
to O(n); it can be reduced to SO(n) iff ξ is orientable.

(b) The structure group of a rank n complex vector bundle, ξ, can be reduced to U(n); it
can be reduced to SU(n) iff ξ is orientable.

Proof . We prove (a), the proof of (b) being similar. Using Theorem 7.9, put a metric on ξ.
For every Uα in a trivializing cover for ξ and every b ∈ B, by Gram-Schmidt, orthonormal
bases for π−1(b) exit. Consider the family of trivializing maps, �ϕα : π−1(Uα) → Uα × V ,
such that �ϕα,b : π−1(b) −→ V maps orthonormal bases of the fibre to orthonormal bases of
V . Then, it is easy to check that the corresponding cocycle takes values in O(n) and if ξ is
orientable, the determinants being positive, these values are actually in SO(n).

Remark: If ξ is a Euclidean rank n vector bundle, then by Proposition 7.10, we may assume
that ξ is given by some cocycle, (gαβ), where gαβ(b) ∈ O(n), for all b ∈ Uα ∩ Uβ. We saw in
Section 7.3 (f) that the dual bundle, ξ∗, is given by the cocycle

(gαβ(b)
�)−1, b ∈ Uα ∩ Uβ.

As gαβ(b) is an orthogonal matrix, (gαβ(b)�)−1 = gαβ(b), and thus, any Euclidean bundle is
isomorphic to its dual. As we noted earlier, this is false for Hermitian bundles.

Let ξ = (E, π, B, V ) be a rank n vector bundle and assume ξ is orientable. A family of
trivializing maps, ϕα : π−1(Uα) → Uα × V , is oriented iff for all α, β, the transition function,
gαβ(b) has positive determinant for all b ∈ Uα ∩ Uβ. Two oriented families of trivializing
maps, ϕα : π−1(Uα) → Uα × V and ψβ : π−1(Wβ) → Wα × V , are equivalent iff for every
b ∈ Uα ∩ Wβ, the map pr2 ◦ ϕα ◦ ψ−1

β
� {b} × V : V −→ V has positive determinant. It

is easily checked that this is an equivalence relation and that it partitions all the oriented
families of trivializations of ξ into two equivalence classes. Either equivalence class is called
an orientation of ξ.

If M is a manifold and ξ = TM , the tangent bundle of ξ, we know from Section 7.2 that
the transition functions of TM are of the form

gαβ(p)(u) = (ϕα ◦ ϕ−1
β
)�
ϕ(p)(u),
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where each ϕα : Uα → R
n is a chart of M . Consequently, TM is orientable iff the Jacobian of

(ϕα ◦ ϕ−1
β
)�
ϕ(p) is positive, for every p ∈ M . This is equivalent to the condition of Definition

3.27 for M to be orientable. Therefore, the tangent bundle, TM , of a manifold, M , is
orientable iff M is orientable.

� The notion of orientability of a vector bundle, ξ = (E, π, B, V ), is not equivalent to the
orientability of its total space, E. Indeed, if we look at the transition functions of the

total space of TM given in Section 7.2, we see that TM , as a manifold , is always orientable,
even if M is not orientable. Yet, as a bundle, TM is orientable iff M .

On the positive side, if ξ = (E, π, B, V ) is an orientable vector bundle and its base, B, is
an orientable manifold, then E is orientable too.

To see this, assume that B is a manifold of dimension m, ξ is a rank n vector bundle
with fibre V , let ((Uα,ψα))α be an atlas for B, let ϕα : π−1(Uα) → Uα × V be a collection of
trivializing maps for ξ and pick any isomorphism, ι : V → R

n. Then, we get maps,

(ψα × ι) ◦ ϕα : π
−1(Uα) −→ R

m × R
n.

It is clear that these maps form an atlas for E. Check that the corresponding transition
maps for E are of the form

(x, y) �→ (ψβ ◦ ψ−1
α
(x), gαβ(ψ

−1
α
(x))y).

Moreover, if B and ξ are orientable, check that these transition maps have positive Jacobian.

The fact that every bundle admits a metric allows us to define the notion of orthogonal
complement of a subbundle. We state the following theorem without proof. The reader is
invited to consult Milnor and Stasheff [110] for a proof (Chapter 3).

Proposition 7.11 Let ξ and η be two vector bundles with ξ a subbundle of η. Then, there
exists a subbundle, ξ⊥, of η, such that every fibre of ξ⊥ is the orthogonal complement of the
fibre of ξ in the fibre of η, over every b ∈ B and

η ≈ ξ ⊕ ξ⊥.

In particular, if N is a submanifold of a Riemannian manifold, M , then the orthogonal
complement of TN in TM � N is isomorphic to the normal bundle, (TM � N)/TN .

Remark: It can be shown (see Madsen and Tornehave [100], Chapter 15) that for every
real vector bundle, ξ, there is some integer, k, such that ξ has a complement, η, in �k, where
�k = B × R

k is the trivial rank k vector bundle, so that

ξ ⊕ η = �k.



7.5. PRINCIPAL FIBRE BUNDLES 255

This fact can be used to prove an interesting property of the space of global sections, Γ(ξ).
First, observe that Γ(ξ) is not just a real vector space but also a C∞(B)-module (see Section
22.19). Indeed, for every smooth function, f : B → R, and every smooth section, s : B → E,
the map, fs : B → E, given by

(fs)(b) = f(b)s(b), b ∈ B,

is a smooth section of ξ. In general, Γ(ξ) is not a free C∞(B)-module unless ξ is trivial.
However, the above remark implies that

Γ(ξ)⊕ Γ(η) = Γ(�k),

where Γ(�k) is a free C∞(B)-module of dimension dim(ξ) + dim(η). This proves that Γ(ξ)
is a finitely generated C∞(B)-module which is a summand of a free C∞(B)-module. Such
modules are projective modules , see Definition 22.9 in Section 22.19. Therefore, Γ(ξ) is a
finitely generated projective C∞(B)-module. The following isomorphisms can be shown (see
Madsen and Tornehave [100], Chapter 16):

Proposition 7.12 The following isomorphisms hold for vector bundles:

Γ(Hom(ξ, η)) ∼= HomC∞(B)(Γ(ξ),Γ(η))

Γ(ξ ⊗ η) ∼= Γ(ξ)⊗C∞(B) Γ(η)

Γ(ξ∗) ∼= HomC∞(B)(Γ(ξ), C
∞(B)) = (Γ(ξ))∗

Γ(
k�
ξ) ∼=

k�

C∞(B)

(Γ(ξ)).

7.5 Principal Fibre Bundles

We now consider principal bundles. Such bundles arise in terms of Lie groups acting on
manifolds.

Definition 7.13 Let G be a Lie group. A principal fibre bundle, for short, a principal
bundle, is a fibre bundle, ξ = (E, π, B,G,G), in which the fibre is G and the structure group
is also G, viewed as its group of left translations (ie., G acts on itself by multiplication on
the left). This means that every transition function, gαβ : Uα ∩ Uβ → G, satisfies

gαβ(b)(h) = g(b)h, for some g(b) ∈ G,

for all b ∈ Uα ∩ Uβ and all h ∈ G. A principal G-bundle is denoted ξ = (E, π, B,G).

Note that G in gαβ : Uα ∩ Uβ → G is viewed as its group of left translations under the
isomorphism, g �→ Lg, and so, gαβ(b) is some left translation, Lg(b). The inverse of the above
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isomorphism is given by L �→ L(1), so g(b) = gαβ(b)(1). In view of these isomorphisms, we
allow ourself the (convenient) abuse of notation

gαβ(b)(h) = gαβ(b)h,

where, on the left, gαβ(b) is viewed as a left translation of G and on the right, as an element
of G.

When we want to emphasize that a principal bundle has structure group, G, we use the
locution principal G-bundle.

It turns out that if ξ = (E, π, B,G) is a principal bundle, then G acts on the total space,
E, on the right. For the next proposition, recall that a right action, · : X × G → X, is free
iff for every g ∈ G, if g �= 1, then x · g �= x for all x ∈ X.

Proposition 7.13 If ξ = (E, π, B,G) is a principal bundle, then there is a right action of
G on E. This action takes each fibre to itself and is free. Moreover, E/G is diffeomorphic
to B.

Proof . We show how to define the right action and leave the rest as an exercise. Let
{(Uα,ϕα)} be some trivializing cover defining ξ. For every z ∈ E, pick some Uα so that
π(z) ∈ Uα and let ϕα(z) = (b, h), where b = π(z) and h ∈ G. For any g ∈ G, we set

z · g = ϕ−1
α
(b, hg).

If we can show that this action does not depend on the choice of Uα, then it is clear that
it is a free action. Suppose that we also have b = π(z) ∈ Uβ and that ϕβ(z) = (b, h�). By
definition of the transition functions, we have

h� = gβα(b)h and ϕβ(z · g) = (b, gβα(b)(hg)).

However,
gβα(b)(hg) = (gβα(b)h)g = h�g,

hence
z · g = ϕ−1

β
(b, h�g),

which proves that our action does not depend on the choice of Uα.

Observe that the action of Proposition 7.13 is defined by

z · g = ϕ−1
α
(b,ϕα,b(z)g), with b = π(z),

for all z ∈ E and all g ∈ G. It is clear that this action satisfies the following two properties:
For every (Uα,ϕα),

(1) π(z · g) = π(z) and
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(2) ϕα(z · g) = ϕα(z) · g, for all z ∈ E and all g ∈ G,

where we define the right action of G on Uα ×G so that (b, h) · g = (b, hg). We say that ϕα

is G-equivariant (or equivariant).

The following proposition shows that it is possible to define a principal G-bundle using
a suitable right action and equivariant trivializations:

Proposition 7.14 Let E be a smooth manifold, G a Lie group and let · : E ×G → E be a
smooth right action of G on E and assume that

(a) The right action of G on E is free;

(b) The orbit space, B = E/G, is a smooth manifold under the quotient topology and the
projection, π : E → E/G, is smooth;

(c) There is a family of local trivializations, {(Uα,ϕα)}, where {Uα} is an open cover for
B = E/G and each

ϕα : π
−1(Uα) → Uα ×G

is an equivariant diffeomorphism, which means that

ϕα(z · g) = ϕα(z) · g,

for all z ∈ π−1(Uα) and all g ∈ G, where the right action of G on Uα ×G is
(b, h) · g = (b, hg).

Then, ξ = (E, π, E/G,G) is a principal G-bundle.

Proof . Since the action of G on E is free, every orbit, b = z · G, is isomorphic to G and
so, every fibre, π−1(b), is isomorphic to G. Thus, given that we have trivializing maps, we
just have to prove that G acts by left translation on itself. Pick any (b, h) in Uβ ×G and let
z ∈ π−1(Uβ) be the unique element such that ϕβ(z) = (b, h). Then, as

ϕβ(z · g) = ϕβ(z) · g, for all g ∈ G,

we have
ϕβ(ϕ

−1
β
(b, h) · g) = ϕβ(z · g) = ϕβ(z) · g = (b, h) · g,

which implies that
ϕ−1
β
(b, h) · g = ϕ−1

β
((b, h) · g).

Consequently,

ϕα ◦ ϕ−1
β
(b, h) = ϕα ◦ ϕ−1

β
((b, 1) · h) = ϕα(ϕ

−1
β
(b, 1) · h) = ϕα ◦ ϕ−1

β
(b, 1) · h,

and since

ϕα ◦ ϕ−1
β
(b, h) = (b, gαβ(b)(h)) and ϕα ◦ ϕ−1

β
(b, 1) = (b, gαβ(b)(1))
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we get
gαβ(b)(h) = gαβ(b)(1)h.

The above shows that gαβ(b) : G → G is the left translation by gαβ(b)(1) and thus, the
transition functions, gαβ(b), constitute the group of left translations of G and ξ is indeed a
principal G-bundle.

Bröcker and tom Dieck [25] (Chapter I, Section 4) and Duistermaat and Kolk [53] (Ap-
pendix A) define principal bundles using the conditions of Proposition 7.14. Propositions
7.13 and 7.14 show that this alternate definition is equivalent to ours (Definition 7.13).

It turns out that when we use the definition of a principal bundle in terms of the conditions
of Proposition 7.14, it is convenient to define bundle maps in terms of equivariant maps. As
we will see shortly, a map of principal bundles is a fibre bundle map.

Definition 7.14 If ξ1 = (E1, π1, B1, G) and ξ2 = (E2, π2, B1, G) are two principal bundles
a bundle map (or bundle morphism), f : ξ1 → ξ2, is a pair, f = (fE, fB), of smooth maps
fE : E1 → E2 and fB : B1 → B2 such that

(a) The following diagram commutes:

E1

π1

��

fE �� E2

π2

��
B1

fB

�� B2

(b) The map, fE, is G-equivariant , that is,

fE(a · g) = fE(a) · g, for all a ∈ E1 and all g ∈ G.

A bundle map is an isomorphism if it has an inverse as in Definition 7.2. If the bundles
ξ1 and ξ2 are over the same base, B, then we also require fB = id.

At first glance, it is not obvious that a map of principal bundles satisfies condition (b) of
Definition 7.3. If we define �fα : Uα ×G → Vβ ×G by

�fα = ϕ�
β
◦ fE ◦ ϕ−1

α
,

then locally, fE is expressed as
fE = ϕ�

β

−1 ◦ �fα ◦ ϕα.

Furthermore, it is trivial that if a map is equivariant and invertible then its inverse is equiv-
ariant. Consequently, since

�fα = ϕ�
β
◦ fE ◦ ϕ−1

α
,
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as ϕ−1
α
, ϕ�

β
and fE are equivariant, �fα is also equivariant and so, �fα is a map of (trivial)

principal bundles. Thus, it it enough to prove that for every map of principal bundles,

ϕ : Uα ×G → Vβ ×G,

there is some smooth map, ρα : Uα → G, so that

ϕ(b, g) = (fB(b), ρα(b)(g)), for all b ∈ Uα and all g ∈ G.

Indeed, we have the following

Proposition 7.15 For every map of trivial principal bundles,

ϕ : Uα ×G → Vβ ×G,

there are smooth maps, fB : Uα → Vβ and rα : Uα → G, so that

ϕ(b, g) = (fB(b), rα(b)g), for all b ∈ Uα and all g ∈ G.

In particular, ϕ is a diffeomorphism on fibres.

Proof . As ϕ is a map of principal bundles,

ϕ(b, 1) = (fB(b), rα(b)), for all b ∈ Uα

for some smooth maps, fB : Uα → Vβ and rα : Uα → G. Now, using equivariance, we get

ϕ(b, g) = ϕ((b, 1)g) = ϕ(g, 1) · g = (fB(b), rα(b)) · g = (fB(b), rα(b)g),

as claimed.

Consequently, the map, ρα : Uα → G, given by

ρα(b)(g) = rα(b)g for all b ∈ Uα and all g ∈ G

satisfies

ϕ(b, g) = (fB(b), ρα(b)(g)), for all b ∈ Uα and all g ∈ G

and a map of principal bundles is indeed a fibre bundle map (as in Definition 7.3). Since a
principal bundle map is a fibre bundle map, Proposition 7.3 also yields the useful fact:

Proposition 7.16 Any map, f : ξ1 → ξ2, between two principal bundles over the same base,
B, is an isomorphism.
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Even though we are not aware of any practical applications in computer vision, robotics,
or medical imaging, we wish to digress briefly on the issue of the triviality of bundles and
the existence of sections.

A natural question is to ask whether a fibre bundle, ξ, is isomorphic to a trivial bundle.
If so, we say that ξ is trivial. (By the way, the triviality of bundles comes up in physics, in
particular, field theory.) Generally, this is a very difficult question, but a first step can be
made by showing that it reduces to the question of triviality for principal bundles.

Indeed, if ξ = (E, π, B, F,G) is a fibre bundle with fibre, F , using Theorem 7.4, we
can construct a principal fibre bundle, P (ξ), using the transition functions, {gαβ}, of ξ, but
using G itself as the fibre (acting on itself by left translation) instead of F . We obtain the
principal bundle, P (ξ), associated to ξ. For example, the principal bundle associated with
a vector bundle is the frame bundle, discussed at the end of Section 7.3. Then, given two
fibre bundles ξ and ξ�, we see that ξ and ξ� are isomorphic iff P (ξ) and P (ξ�) are isomorphic
(Steenrod [141], Part I, Section 8, Theorem 8.2). More is true: The fibre bundle ξ is trivial
iff the principal fibre bundle P (ξ) is trivial (this is easy to prove, do it! Otherwise, see
Steenrod [141], Part I, Section 8, Corollary 8.4). Morever, there is a test for the triviality of
a principal bundle, the existence of a (global) section.

The following proposition, although easy to prove, is crucial:

Proposition 7.17 If ξ is a principal bundle, then ξ is trivial iff it possesses some global
section.

Proof . If f : B×G → ξ is an isomorphism of principal bundles over the same base, B, then
for every g ∈ G, the map b �→ f(b, g) is a section of ξ.

Conversely, let s : B → E be a section of ξ. Then, observe that the map, f : B ×G → ξ,
given by

f(b, g) = s(b)g

is a map of principal bundles. By Proposition 7.16, it is an isomorphism, so ξ is trivial.

Generally, in geometry, many objects of interest arise as global sections of some suitable
bundle (or sheaf): vector fields, differential forms, tensor fields, etc.

Given a principal bundle, ξ = (E, π, B,G), and given a manifold, F , if G acts effectively
on F from the left, again, using Theorem 7.4, we can construct a fibre bundle, ξ[F ], from
ξ, with F as typical fibre and such that ξ[F ] has the same transitions functions as ξ. In
the case of a principal bundle, there is another slightly more direct construction that takes
us from principal bundles to fibre bundles (see Duistermaat and Kolk [53], Chapter 2, and
Davis and Kirk [39], Chapter 4, Definition 4.6, where it is called the Borel construction).
This construction is of independent interest so we describe it briefly (for an application of
this construction, see Duistermaat and Kolk [53], Chapter 2).
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As ξ is a principal bundle, recall that G acts on E from the right, so we have a right
action of G on E × F , via

(z, f) · g = (z · g, g−1 · f).
Consequently, we obtain the orbit set, E×F/ ∼, denoted E×GF , where ∼ is the equivalence
relation

(z, f) ∼ (z�, f �) iff (∃g ∈ G)(z� = z · g, f � = g−1 · f).
Note that the composed map,

E × F
pr1−→ E

π−→ B,

factors through E ×G F , since

π(pr1(z, f)) = π(z) = π(z · g) = π(pr1(z · g, g−1 · f)).

Let p : E ×G F → B be the corresponding map. The following proposition is not hard to
show:

Proposition 7.18 If ξ = (E, π, B,G) is a principal bundle and F is any manifold such that
G acts effectively on F from the left, then, ξ[F ] = (E ×G F, p, B, F,G) is a fibre bundle with
fibre F and structure group G and ξ[F ] and ξ have the same transition functions.

Let us verify that the charts of ξ yield charts for ξ[F ]. For any Uα in an open cover for
B, we have a diffeomorphism

ϕα : π
−1(Uα) → Uα ×G.

Observe that we have an isomorphism

(Uα ×G)×G F ∼= Uα × F,

where, as usual, G acts on Uα ×G via (z, h) · g = (z, hg), an isomorphism

p−1(Uα) ∼= π−1(Uα)×G F,

and that ϕα induces an isomorphism

π−1(Uα)×G F
ϕα−→ (Uα ×G)×G F.

So, we get the commutative diagram

p−1(Uα)

p

��

� �� Uα × F

pr1

��
Uα Uα,
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which yields a local trivialization for ξ[F ]. It is easy to see that the transition functions of
ξ[F ] are the same as the transition functions of ξ.

The fibre bundle, ξ[F ], is called the fibre bundle induced by ξ. Now, if we start with a
fibre bundle, ξ, with fibre, F , and structure group, G, if we make the associated principal
bundle, P (ξ), and then the induced fibre bundle, P (ξ)[F ], what is the relationship between
ξ and P (ξ)[F ]?

The answer is: ξ and P (ξ)[F ] are equivalent (this is because the transition functions are
the same.)

Now, if we start with a principal G-bundle, ξ, make the fibre bundle, ξ[F ], as above, and
then the principal bundle, P (ξ[F ]), we get a principal bundle equivalent to ξ. Therefore, the
maps

ξ �→ ξ[F ] and ξ �→ P (ξ),

are mutual inverses and they set up a bijection between equivalence classes of principal G-
bundles over B and equivalence classes of fibre bundles over B (with structure group, G).
Moreover, this map extends to morphisms, so it is functorial (see Steenrod [141], Part I,
Section 2, Lemma 2.6–Lemma 2.10). As a consequence, in order to “classify” equivalence
classes of fibre bundles (assuming B and G fixed), it is enough to know how to classify
principal G-bundles over B. Given some reasonable conditions on the coverings of B, Milnor
solved this classification problem, but this is taking us way beyond the scope of these notes!

The classical reference on fibre bundles, vector bundles and principal bundles, is Steenrod
[141]. More recent references include Bott and Tu [19], Madsen and Tornehave [100], Morita
[114], Griffith and Harris [66], Wells [150], Hirzebruch [77], Milnor and Stasheff [110], Davis
and Kirk [39], Atiyah [10], Chern [33], Choquet-Bruhat, DeWitt-Morette and Dillard-Bleick
[37], Hirsh [76], Sato [133], Narasimham [117], Sharpe [139] and also Husemoller [82], which
covers more, including characteristic classes.

Proposition 7.14 shows that principal bundles are induced by suitable right actions but
we still need sufficient conditions to guarantee conditions (a), (b) and (c). Such conditions
are given in the next section.

7.6 Homogeneous Spaces, II

Now that we know about manifolds and Lie groups, we can revisit the notion of homogeneous
space given in Definition 2.8, which only applied to groups and sets without any topology
or differentiable structure.

Definition 7.15 A homogeneous space is a smooth manifold, M , together with a smooth
transitive action, · : G×M → M , of a Lie group, G, on M .

In this section, we prove that G is the total space of a principal bundle with base space
M and structure group, Gx, the stabilizer of any x ∈ M .
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If M is a manifold, G is a Lie group and · : M × G → M is a smooth right action, in
general, M/G is not even Hausdorff. A sufficient condition can be given using the notion
of a proper map. If X and Y are two Hausdorff topological spaces,1 a continuous map,
ϕ : X → Y , is proper iff for every topological space, Z, the map ϕ× id : X × Z → Y × Z is
a closed map (A map, f , is a closed map iff the image of any closed set by f is a closed set).
If we let Z be a one-point space, we see that a proper map is closed. It can be shown (see
Bourbaki, General Topology [23], Chapter 1, Section 10) that a continuous map, ϕ : X → Y ,
is proper iff ϕ is closed and if ϕ−1(y) is compact for every y ∈ Y . If ϕ is proper, it is easy
to show that ϕ−1(K) is compact in X whenever K is compact in Y . Moreover, if Y is also
locally compact, then Y is compactly generated, which means that a subset, C, of Y is closed
iff K ∩ C is closed in C for every compact subset K of Y (see Munkres [115]). In this case
(Y locally compact), ϕ is a closed map iff ϕ−1(K) is compact in X whenever K is compact
in Y (see Bourbaki, General Topology [23], Chapter 1, Section 10).2 In particular, this is
true if Y is a manifold since manifolds are locally compact. Then, we say that the action,
· : M ×G → M , is proper iff the map,

M ×G −→ M ×M, (x, g) �→ (x, x · g),
is proper.

If G and M are Hausdorff and G is locally compact, then it can be shown (see Bourbaki,
General Topology [23], Chapter 3, Section 4) that the action · : M × G → M is proper iff
for all x, y ∈ M , there exist some open sets, Vx and Vy in M , with x ∈ Vx and y ∈ Vy, so
that the closure, K, of the set K = {g ∈ G | Vx · g ∩ Vy �= ∅} is compact in G. In particular,
if G has the discrete topology, this conditions holds iff the sets {g ∈ G | Vx · g ∩ Vy �= ∅}
are finite. Also, if G is compact, then K is automatically compact, so every compact group
acts properly. If the action, · : M ×G → M , is proper, then the orbit equivalence relation is
closed since it is the image of M ×G in M ×M , and so, M/G is Hausdorff. We then have
the following theorem proved in Duistermaat and Kolk [53] (Chapter 1, Section 11):

Theorem 7.19 Let M be a smooth manifold, G be a Lie group and let · : M × G → M
be a right smooth action which is proper and free. Then, M/G is a principal G-bundle of
dimension dimM − dimG.

Theorem 7.19 has some interesting corollaries. Let G be a Lie group and let H be a
closed subgroup of G. Then, there is a right action of H on G, namely

G×H −→ G, (g, h) �→ gh,

and this action is clearly free and proper. Because a closed subgroup of a Lie group is a Lie
group, we get the following result whose proof can be found in Bröcker and tom Dieck [25]
(Chapter I, Section 4) or Duistermaat and Kolk [53] (Chapter 1, Section 11):

1It is not necessary to assume that X and Y are Hausdorff but, if X and/or Y are not Hausdorff, we
have to replace “compact” by “quasi-compact.” We have no need for this extra generality.

2Duistermaat and Kolk [53] seem to have overlooked the fact that a condition on Y (such as local
compactness) is needed in their remark on lines 5-6, page 53, just before Lemma 1.11.3.
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Corollary 7.20 If G is a Lie group and H is a closed subgroup of G, then, the right action
of H on G defines a principal H-bundle, ξ = (G, π, G/H,H), where π : G → G/H is the
canonical projection. Moreover, π is a submersion, which means that dπg is surjective for
all g ∈ G (equivalently, the rank of dπg is constant and equal to dimG/H, for all g ∈ G).

Now, if · : G ×M → M is a smooth transitive action of a Lie group, G, on a manifold,
M , we know that the stabilizers, Gx, are all isomorphic and closed (see Section 2.5, Remark
after Theorem 2.26). Then, we can let H = Gx and apply Corollary 7.20 to get the following
result (mostly proved in in Bröcker and tom Dieck [25] (Chapter I, Section 4):

Proposition 7.21 Let · : G×M → M be smooth transitive action of a Lie group, G, on a
manifold, M . Then, G/Gx and M are diffeomorphic and G is the total space of a principal
bundle, ξ = (G, π,M,Gx), where Gx is the stabilizer of any element x ∈ M .

Thus, we finally see that homogeneous spaces induce principal bundles. Going back to
some of the examples of Section 2.2, we see that

(1) SO(n+ 1) is a principal SO(n)-bundle over the sphere Sn (for n ≥ 0).

(2) SU(n+ 1) is a principal SU(n)-bundle over the sphere S2n+1 (for n ≥ 0).

(3) SL(2,R) is a principal SO(2)-bundle over the upper-half space, H.

(4) GL(n,R) is a principal O(n)-bundle over the space SPD(n) of symmetric, positive
definite matrices.

(5) GL+(n,R), is a principal SO(n)-bundle over the space, SPD(n), of symmetric, posi-
tive definite matrices, with fibre SO(n).

(6) SO(n+ 1) is a principal O(n)-bundle over the real projective space RP
n (for n ≥ 0).

(7) SU(n + 1) is a principal U(n)-bundle over the complex projective space CP
n (for

n ≥ 0).

(8) O(n) is a principal O(k)×O(n− k)-bundle over the Grassmannian, G(k, n).

(9) SO(n) is a principal S(O(k)×O(n− k))-bundle over the Grassmannian, G(k, n).

(10) From Section 2.5, we see that the Lorentz group, SO0(n, 1), is a principal SO(n)-
bundle over the space, H+

n
(1), consisting of one sheet of the hyperbolic paraboloid

Hn(1).

Thus, we see that both SO(n+1) and SO0(n, 1) are principal SO(n)-bundles, the differ-
ence being that the base space for SO(n + 1) is the sphere, Sn, which is compact, whereas
the base space for SO0(n, 1) is the (connected) surface, H+

n
(1), which is not compact. Many

more examples can be given, for instance, see Arvanitoyeogos [8].



Chapter 8

Differential Forms

8.1 Differential Forms on Subsets of Rn and de Rham
Cohomology

The theory of differential forms is one of the main tools in geometry and topology. This
theory has a surprisingly large range of applications and it also provides a relatively easy
access to more advanced theories such as cohomology. For all these reasons, it is really an
indispensable theory and anyone with more than a passible interest in geometry should be
familiar with it.

The theory of differential forms was initiated by Poincaré and further elaborated by Elie
Cartan at the end of the nineteenth century. Differential forms have two main roles:

(1) Describe various systems of partial differential equations on manifolds.

(2) To define various geometric invariants reflecting the global structure of manifolds or
bundles. Such invariants are obtained by integrating certain differential forms.

As we will see shortly, as soon as one tries to define integration on higher-dimensional
objects, such as manifolds, one realizes that it is not functions that are integrated but instead,
differential forms. Furthermore, as by magic, the algebra of differential forms handles changes
of variables automatically and yields a neat form of “Stokes formula”.

Our goal is to define differential forms on manifolds but we begin with differential forms
on open subsets of Rn in order to build up intuition.

Differential forms are smooth functions on open subset, U , of Rn, taking as values al-
ternating tensors in some exterior power,

�
p(Rn)∗. Recall from Sections 22.14 and 22.15,

in particular, Proposition 22.24, that for every finite-dimensional vector space, E, the iso-
morphisms, µ :

�
n(E∗) −→ Altn(E;R), induced by the linear extensions of the maps given

by
µ(v∗1 ∧ · · · ∧ v∗

n
)(u1, . . . , un) = det(u∗

j
(ui))

265
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yield a canonical isomorphism of algebras, µ :
�
(E∗) −→ Alt(E), where

Alt(E) =
�

n≥0

Altn(E;R)

and where Altn(E;R) is the vector space of alternating multilinear maps on R
n. In view

of these isomorphisms, we will identify ω and µ(ω) for any ω ∈
�

n(E∗) and we will write
ω(u1, . . . , un) as an abbrevation for µ(ω)(u1, . . . , un).

Because Alt(Rn) is an algebra under the wedge product, differential forms also have a
wedge product. However, the power of differential forms stems from the exterior differential ,
d, which is a skew-symmetric version of the usual differentiation operator.

Definition 8.1 Given any open subset, U , of Rn, a smooth differential p-form on U , for
short, p-form on U , is any smooth function, ω : U →

�
p(Rn)∗. The vector space of all

p-forms on U is denoted Ap(U). The vector space, A∗(U) =
�

p≥0 Ap(U), is the set of
differential forms on U .

Observe that A0(U) = C∞(U,R), the vector space of smooth functions on U and
A1(U) = C∞(U, (Rn)∗), the set of smooth functions from U to the set of linear forms on R

n.
Also, Ap(U) = (0) for p > n.

Remark: The space, A∗(U), is also denoted A•(U). Other authors use Ωp(U) instead of
Ap(U) but we prefer to reserve Ωp for holomorphic forms.

Recall from Section 22.12 that if (e1, . . . , en) is any basis of Rn and (e∗1, . . . , e
∗
n
) is its dual

basis, then the alternating tensors,

e∗
I
= e∗

i1
∧ · · · ∧ e∗

ip
,

form basis of
�

p(Rn)∗, where I = {i1, . . . , ip} ⊆ {1, . . . , n}, with i1 < · · · < ip. Thus, with
respect to the basis (e1, . . . , en), every p-form, ω, can be uniquely written

ω(x) =
�

I

fI(x) e
∗
i1
∧ · · · ∧ e∗

ip
=

�

I

fI(x) e
∗
I

x ∈ U,

where each fI is a smooth function on U . For example, if U = R
2 − {0}, then

ω(x, y) =
−y

x2 + y2
e∗1 +

x

x2 + y2
e∗2

is a 2-form on U , (with e1 = (1, 0) and e2 = (0, 1)).

We often write ωx instead of ω(x). Now, not only is A∗(U) a vector space, it is also an
algebra.
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Definition 8.2 The wedge product on A∗(U) is defined as follows: For all p, q ≥ 0, the
wedge product, ∧ : Ap(U)×Aq(U) → Ap+q(U), is given by

(ω ∧ η)(x) = ω(x) ∧ η(x), x ∈ U.

For example, if ω and η are one-forms, then

(ω ∧ η)x(u, v) = ωx(u) ∧ ηx(v)− ωx(v) ∧ ηx(u).

For f ∈ A0(U) = C∞(U,R) and ω ∈ Ap(U), we have f ∧ ω = fω. Thus, the algebra,
A∗(U), is also a C∞(U,R)-module,

Proposition 22.22 immediately yields

Proposition 8.1 For all forms ω ∈ Ap(U) and η ∈ Aq(U), we have

η ∧ ω = (−1)pqω ∧ η.

We now come to the crucial operation of exterior differentiation. First, recall that if
f : U → V is a smooth function from U ⊆ R

n to a (finite-dimensional) normed vector space,
V , the derivative, f � : U → Hom(Rn, V ), of f (also denoted, Df) is a function where f �(x)
is a linear map, f �(x) ∈ Hom(Rn, V ), for every x ∈ U , and such that

f �(x)(ej) =
m�

i=1

∂fi
∂xj

(x) ui, 1 ≤ j ≤ n,

where (e1, . . . , en) is the canonical basis of Rn and (u1, . . . , um) is a basis of V . The m × n
matrix, �

∂fi
∂xj

�
,

is the Jacobian matrix of f . We also write f �
x
(u) for f �(x)(u). Observe that since a p-form

is a smooth map, ω : U →
�

p(Rn)∗, its derivative is a map,

ω� : U → Hom(Rn,
p�
(Rn)∗),

such that ω�
x
is a linear map from R

n to
�

p(Rn)∗, for every x ∈ U . By the isomorphism,�
p(Rn)∗ ∼= Altp(Rn;R), we can view ω�

x
as a linear map, ωx : Rn → Altp(Rn;R), or equiva-

lently, as a multilinear form, ω�
x
: (Rn)p+1 → R, which is alternating in its last p arguments.

The exterior derivative, (dω)x, is obtained by making ω�
x
into an alternating map in all of

its p+ 1 arguments.
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Definition 8.3 For every p ≥ 0, the exterior differential , d : Ap(U) → Ap+1(U), is given by

(dω)x(u1, . . . , up+1) =
p+1�

i=1

(−1)i−1ω�
x
(ui)(u1, . . . , �ui, . . . , up+1),

for all ω ∈ Ap(U) and all u1, . . . , up+1 ∈ R
n, where the hat over the argument ui means that

it should be omitted.

One should check that (dω)x is indeed alternating but this is easy. If necessary to avoid
confusion, we write dp : Ap(U) → Ap+1(U) instead of d : Ap(U) → Ap+1(U).

Remark: Definition 8.3 is the definition adopted by Cartan [29, 30]1 and Madsen and
Tornehave [100]. Some authors use a different approach often using Propositions 8.2 and 8.3
as a starting point but we find the approach using Definition 8.3 more direct. Furthermore,
this approach extends immediately to the case of vector valued forms.

For any smooth function, f ∈ A0(U) = C∞(U,R), we get

dfx(u) = f �
x
(u).

Therefore, for smooth functions, the exterior differential, df , coincides with the usual deriva-
tive, f � (we identify

�1(Rn)∗ and (Rn)∗). For any 1-form, ω ∈ A1(U), we have

dωx(u, v) = ω�
x
(u)(v)− ω�

x
(v)(u).

It follows that the map
(u, v) �→ ω�

x
(u)(v)

is symmetric iff dω = 0.

For a concrete example of exterior differentiation, if

ω(x, y) =
−y

x2 + y2
e∗1 +

x

x2 + y2
e∗2,

check that dω = 0.

The following observation is quite trivial but it will simplify notation: On R
n, we have

the projection function, pri : Rn → R, with pri(u1, . . . , un) = ui. Note that pri = e∗
i
, where

(e1, . . . , en) is the canonical basis of Rn. Let xi : U → R be the restriction of pri to U . Then,
note that x�

i
is the constant map given by

x�
i
(x) = pri, x ∈ U.

1We warn the reader that a few typos have crept up in the English translation, Cartan [30], of the orginal
version Cartan [29].
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It follows that dxi = x�
i
is the constant function with value pri = e∗

i
. Now, since every p-form,

ω, can be uniquely expressed as

ωx =
�

I

fI(x) e
∗
i1
∧ · · · ∧ e∗

ip
=

�

I

fI(x)e
∗
I
, x ∈ U,

using Definition 8.2, we see immediately that ω can be uniquely written in the form

ω =
�

I

fI(x) dxi1 ∧ · · · ∧ dxip , (∗)

where the fI are smooth functions on U .

Observe that for f ∈ A0(U) = C∞(U,R), we have

dfx =
n�

i=1

∂f

∂xi

(x) e∗
i

and df =
n�

i=1

∂f

∂xi

dxi.

Proposition 8.2 For every p form, ω ∈ Ap(U), with ω = fdxi1 ∧ · · · ∧ dxip, we have

dω = df ∧ dxi1 ∧ · · · ∧ dxip .

Proof . Recall that ωx = fe∗
i1
∧ · · · ∧ e∗

ip
= fe∗

I
, so

ω�
x
(u) = f �

x
(u)e∗

I
= dfx(u)e

∗
I

and by Definition 8.3, we get

dωx(u1, . . . , up+1) =
p+1�

i=1

(−1)i−1dfx(ui)e
∗
I
(u1, . . . , �ui, . . . , up+1) = (dfx ∧ e∗

I
)(u1, . . . , up+1),

where the last equation is an instance of the equation stated just before Proposition 22.24.

We can now prove

Proposition 8.3 For all ω ∈ Ap(U) and all η ∈ Aq(U),

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη.

Proof . In view of the unique representation, (∗), it is enough to prove the proposition when
ω = fe∗

I
and η = ge∗

J
. In this case, as ω ∧ η = fg e∗

I
∧ e∗

J
, by Proposition 8.2, we have

d(ω ∧ η) = d(fg) ∧ e∗
I
∧ e∗

J

= ((df)g + f(dg)) ∧ e∗
I
∧ e∗

J

= (df)ge∗
I
∧ e∗

J
+ f(dg) ∧ e∗

I
∧ e∗

J

= (df)e∗
I
∧ ge∗

J
+ (−1)pf ∧ e∗

I
∧ (dg) ∧ e∗

J

= dω ∧ η + (−1)pω ∧ dη,

as claimed.

We say that d is an anti-derivation of degree −1. Finally, here is the crucial and almost
magical property of d:
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Proposition 8.4 For every p ≥ 0, the composition Ap(U)
d−→ Ap+1(U)

d−→ Ap+2(U) is
identically zero, that is,

d ◦ d = 0,

or, using superscripts, dp+1 ◦ dp = 0.

Proof . It is enough to prove the proposition when ω = fe∗
I
. We have

dωx = dfx ∧ e∗
I
=

∂f

∂x1
(x) e∗1 ∧ e∗

I
+ · · ·+ ∂f

∂xn

(x) e∗
n
∧ e∗

I
.

As e∗
i
∧ e∗

j
= −e∗

j
∧ e∗

i
and e∗

i
∧ e∗

i
= 0, we get

(d ◦ d)ω =
n�

i,j=1

∂2f

∂xi∂xj

(x) e∗
i
∧ e∗

j
∧ e∗

I

=
�

i<j

�
∂2f

∂xi∂xj

(x)− ∂2f

∂xj∂xi

(x)

�
e∗
i
∧ e∗

j
∧ e∗

I
= 0,

since partial derivatives commute (as f is smooth).

Propositions 8.2, 8.3 and 8.4 can be summarized by saying that A∗(U) together with the
product, ∧, and the differential, d, is a differential graded algebra. As A∗(U)) =

�
p≥0 Ap(U)

and dp : Ap(U) → Ap+1(U), we can view d = (dp) as a linear map, d : A∗(U) → A∗(U), such
that

d ◦ d = 0.

The diagram

A0(U)
d−→ A1(U) −→ · · · −→ Ap−1(U)

d−→ Ap(U)
d−→ Ap+1(U) −→ · · ·

is called the de Rham complex of U . It is a cochain complex .

Let us consider one more example. Assume n = 3 and consider any function, f ∈ A0(U).
We have

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

and the vector �
∂f

∂x
,

∂f

∂y
,

∂f

∂z

�

is the gradient of f . Next, let
ω = Pdx+Qdy +Rdz

be a 1-form on some open, U ⊆ R
3. An easy calculation yields

dω =

�
∂R

∂y
− ∂Q

∂z

�
dy ∧ dz +

�
∂P

∂z
− ∂R

∂x

�
dz ∧ dx+

�
∂Q

∂x
− ∂P

∂y

�
dx ∧ dy.
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The vector field given by

∂R

∂y
− ∂Q

∂z
,

∂P

∂z
− ∂R

∂x
,

∂Q

∂x
− ∂P

∂y

is the curl of the vector field given by (P,Q,R). Now, if

η = Ady ∧ dz +Bdz ∧ dx+ Cdx ∧ dy

is a 2-form on R
3, we get

dη =

�
∂A

∂x
+

∂B

∂y
+

∂C

∂z

�
dx ∧ dy ∧ dz.

The real number,
∂A

∂x
+

∂B

∂y
+

∂C

∂z

is called the divergence of the vector field (A,B,C). When is there a smooth field, (P,Q,R),
whose curl is given by a prescribed smooth field, (A,B,C)? Equivalently, when is there a
1-form, ω = Pdx+Qdy +Rdz, such that

dω = η = Ady ∧ dz +Bdz ∧ dx+ Cdx ∧ dy?

By Proposition 8.4, it is necessary that dη = 0, that is, that (A,B,C) has zero divergence.
However, this condition is not sufficient in general; it depends on the topology of U . If U is
star-like, Poincaré’s Lemma (to be considered shortly) says that this condition is sufficient.

Definition 8.4 A differential form, ω, is closed iff dω = 0, exact iff ω = dη, for some
differential form, η. For every p ≥ 0, let

Zp(U) = {ω ∈ Ap(U) | dω = 0} = Ker d : Ap(U) −→ Ap+1(U),

be the vector space of closed p-forms, also called p-cocycles and for every p ≥ 1, let

Bp(U) = {ω ∈ Ap(U) | ∃η ∈ Ap−1(U), ω = dη} = Im d : Ap−1(U) −→ Ap(U),

be the vector space of exact p-forms, also called p-coboundaries . Set B0(U) = (0). Forms in
Ap(U) are also called p-cochains . As Bp(U) ⊆ Zp(U) (by Proposition 8.4), for every p ≥ 0,
we define the pth de Rham cohomology group of U as the quotient space

Hp

DR(U) = Zp(U)/Bp(U).

An element of Hp

DR(U) is called a cohomology class and is denoted [ω], where ω ∈ Zp(U) is a
cocycle. The real vector space, H•

DR(U) =
�

p≥0 H
p

DR(U), is called the de Rham cohomology
algebra of U .
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We often drop the subscript DR and write Hp(U) for Hp

DR(U) (resp. H•(U) for H•
DR(U))

when no confusion arises. Proposition 8.4 shows that every exact form is closed but the
converse is false in general. Measuring the extent to which closed forms are not exact is the
object of de Rham cohomology . For example, if we consider the form

ω(x, y) =
−y

x2 + y2
dx+

x

x2 + y2
dy,

on U = R
2−{0}, we have dω = 0. Yet, it is not hard to show (using integration, see Madsen

and Tornehave [100], Chapter 1) that there is no smooth function, f , on U such that df = ω.
Thus, ω is a closed form which is not exact. This is because U is punctured.

Observe that H0(U) = Z0(U) = {f ∈ C∞(U,R) | df = 0}, that is, H0(U) is the space of
locally constant functions on U , equivalently, the space of functions that are constant on the
connected components of U . Thus, the cardinality of H0(U) gives the number of connected
components of U . For a large class of open sets (for example, open sets that can be covered
by finitely many convex sets), the cohomology groups, Hp(U), are finite dimensional.

Going back to Definition 8.4, we define the vector spaces Z∗(U) and B∗(U) by

Z∗(U) =
�

p≥0

Zp(U) and B∗(U) =
�

p≥0

Bp(U).

Now, A∗(U) is a graded algebra with multiplication, ∧. Observe that Z∗(U) is a subalgebra
of A∗(U), since

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη,

so dω = 0 and dη = 0 implies d(ω ∧ η) = 0. Furthermore, B∗(U) is an ideal in Z∗(U),
because if ω = dη and dτ = 0, then

d(ητ) = dη ∧ τ + (−1)p−1η ∧ dτ = ω ∧ τ,

with η ∈ Ap−1(U). Therefore, H•
DR = Z∗(U)/B∗(U) inherits a graded algebra structure from

A∗(U). Explicitly, the multiplication in H•
DR is given by

[ω] [η] = [ω ∧ η].

It turns out that Propositions 8.3 and 8.4 together with the fact that d coincides with
the derivative on A0(U) characterize the differential, d.

Theorem 8.5 There is a unique linear map, d : A∗(U) → A∗(U), with d = (dp) and
dp : Ap(U) → Ap+1(U) for every p ≥ 0, such that

(1) df = f �, for every f ∈ A0(U) = C∞(U,R).

(2) d ◦ d = 0.
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(3) For every ω ∈ Ap(U) and every η ∈ Aq(U),

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη.

Proof . Existence has already been shown so we only have to prove uniqueness. Let δ be
another linear map satisfying (1)–(3). By (1), df = δf = f �, if f ∈ A0(U). In particular,
this hold when f = xi, with xi : U → R the restriction of pri to U . In this case, we know
that δxi = e∗

i
, the constant function, e∗

i
= pri. By (2), δe∗

i
= 0. Using (3), we get δe∗

I
= 0,

for every nonempty subset I ⊆ {1, . . . , n}. If ω = fe∗
I
, by (3), we get

δω = δf ∧ e∗
I
+ f ∧ δe∗

I
= δf ∧ e∗

I
= df ∧ e∗

I
= dω.

Finally, since every differential form is a linear combination of special forms, fIe∗I , we conclude
that δ = d.

We now consider the action of smooth maps, ϕ : U → U �, on differential forms in A∗(U �).
We will see that ϕ induces a map from A∗(U �) to A∗(U) called a pull-back map. This
correspond to a change of variables.

Recall Proposition 22.21 which states that if f : E → F is any linear map between two
finite-dimensional vector spaces, E and F , then

µ
�� p�

f�
�
(ω)

�
(u1, . . . , up) = µ(ω)(f(u1), . . . , f(up)), ω ∈

p�
F ∗, u1, . . . , up ∈ E.

We apply this proposition with E = R
n, F = R

m, and f = ϕ�
x
(x ∈ U), and get

µ
�� p�

(ϕ�
x
)�
�
(ωϕ(x))

�
(u1, . . . , up) = µ(ωϕ(x))(ϕ

�
x
(u1), . . . ,ϕ

�
x
(up)), ω ∈ Ap(V ), ui ∈ R

n.

This gives us the behavior of
�

p(ϕ�
x
)� under the identification of

�
p(R)∗ and Altn(Rn;R) via

the isomorphism µ. Consequently, denoting
�

p(ϕ�
x
)� by ϕ∗, we make the following definition:

Definition 8.5 Let U ⊆ R
n and V ⊆ R

m be two open subsets. For every smooth map,
ϕ : U → V , for every p ≥ 0, we define the map, ϕ∗ : Ap(V ) → Ap(U), by

ϕ∗(ω)x(u1, . . . , up) = ωϕ(x)(ϕ
�
x
(u1), . . . ,ϕ

�
x
(up)),

for all ω ∈ Ap(V ), all x ∈ U and all u1, . . . , up ∈ R
n. We say that ϕ∗(ω) (for short, ϕ∗ω) is

the pull-back of ω by ϕ.

As ϕ is smooth, ϕ∗ω is a smooth p-form on U . The maps ϕ∗ : Ap(V ) → Ap(U) induce a
map also denoted ϕ∗ : A∗(V ) → A∗(U). Using the chain rule, we check immediately that

id∗ = id,

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.
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As an example, consider the constant form, ω = e∗
i
. We claim that ϕ∗e∗

i
= dϕi, where

ϕi = pri ◦ ϕ. Indeed,

(ϕ∗e∗
i
)x(u) = e∗

i
(ϕ�

x
(u))

= e∗
i

�
m�

k=1

�
n�

l=1

∂ϕk

∂xl

(x) ul

�
ek

�

=
n�

l=1

∂ϕi

∂xl

(x) ul

=
n�

l=1

∂ϕi

∂xl

(x) e∗
l
(u) = d(ϕi)x(u).

For another example, assume U and V are open subsets of Rn, ω = fdx1∧ · · ·∧ dxn, and
write x = ϕ(y), with x coordinates on V and y coordinates on U . Then

(ϕ∗ω)y = f(ϕ(y)) det

�
∂ϕi

∂yj
(y)

�
dy1 ∧ · · · ∧ dyp = f(ϕ(y))J(ϕ)y dy1 ∧ · · · ∧ dyp,

where

J(ϕ)y = det

�
∂ϕi

∂yj
(y)

�

is the Jacobian of ϕ at y ∈ U .

Proposition 8.6 Let U ⊆ R
n and V ⊆ R

m be two open sets and let ϕ : U → V be a smooth
map. Then

(i) ϕ∗(ω ∧ η) = ϕ∗ω ∧ ϕ∗η, for all ω ∈ Ap(V ) and all η ∈ Aq(V ).

(ii) ϕ∗(f) = f ◦ ϕ, for all f ∈ A0(V ).

(iii) dϕ∗(ω) = ϕ∗(dω), for all ω ∈ Ap(V ), that is, the following diagram commutes for all
p ≥ 0:

Ap(V )
ϕ
∗
��

d

��

Ap(U)

d

��

Ap+1(V )
ϕ
∗
�� Ap+1(U).

Proof . We leave the proof of (i) and (ii) as an exercise (or see Madsen and Tornehave [100],
Chapter 3). First, we prove (iii) in the case ω ∈ A0(V ). Using (i) and (ii) and the calculation
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just before Proposition 8.6, we have

ϕ∗(df) =
m�

k=1

ϕ∗
�

∂f

∂xk

�
∧ ϕ∗(e∗

k
)

=
m�

k=1

�
∂f

∂xk

◦ ϕ
�
∧
�

n�

l=1

∂ϕk

∂xl

e∗
l

�

=
m�

k=1

n�

l=1

�
∂f

∂xk

◦ ϕ
��

∂ϕk

∂xl

�
e∗
l

=
n�

l=1

�
m�

k=1

�
∂f

∂xk

◦ ϕ
�

∂ϕk

∂xl

�
e∗
l

=
n�

l=1

∂(f ◦ ϕ)
∂xl

e∗
l

= d(f ◦ ϕ) = d(ϕ∗(f)).

For the case where ω = fe∗
I
, we know that dω = df ∧ e∗

I
. We claim that

dϕ∗(e∗
I
) = 0.

This is because

dϕ∗(e∗
I
) = d(ϕ∗(e∗

i1
) ∧ · · · ∧ ϕ∗(e∗

ip
))

=
�

(−1)k−1ϕ∗(e∗
i1
) ∧ · · · ∧ d(ϕ∗(e∗

ik
)) ∧ · · · ∧ ϕ∗(e∗

ip
) = 0,

since ϕ∗(e∗
ik
) = dϕik

and d ◦ d = 0. Consequently,

d(ϕ∗(f) ∧ ϕ∗(e∗
I
)) = d(ϕ∗f) ∧ ϕ∗(e∗

I
).

Then, we have

ϕ∗(dω) = ϕ∗(df) ∧ ϕ∗(e∗
I
) = d(ϕ∗f) ∧ ϕ∗(e∗

I
) = d(ϕ∗(f) ∧ ϕ∗(e∗

I
)) = d(ϕ∗(fe∗

I
)) = d(ϕ∗ω).

Since every differential form is a linear combination of special forms, fe∗
I
, we are done.

The fact that d and pull-back commutes is an important fact: It allows us to show that a
map, ϕ : U → V , induces a map, H•(ϕ) : H•(V ) → H•(U), on cohomology and it is crucial
in generalizing the exterior differential to manifolds.

To a smooth map, ϕ : U → V , we associate the map, Hp(ϕ) : Hp(V ) → Hp(U), given by

Hp(ϕ)([ω]) = [ϕ∗(ω)].

This map is well defined because if we pick any representative, ω + dη in the cohomology
class, [ω], specified by the closed form, ω, then

dϕ∗ω = ϕ∗dω = 0
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so ϕ∗ω is closed and

ϕ∗(ω + dη) = ϕ∗ω + ϕ∗(dη) = ϕ∗ω + dϕ∗η,

so Hp(ϕ)([ω]) is well defined. It is also clear that

Hp+q(ϕ)([ω][η]) = Hp(ϕ)([ω])Hq(ϕ)([η]),

which means that H•(ϕ) is a homomorphism of graded algebras. We often denote H•(ϕ)
again by ϕ∗.

We conclude this section by stating without proof an important result known as the
Poincaré Lemma. Recall that a subset, S ⊆ R

n is star-shaped iff there is some point, c ∈ S,
such that for every point, x ∈ S, the closed line segment, [c, x], joining c and x is entirely
contained in S.

Theorem 8.7 (Poincaré’s Lemma) If U ⊆ R
n is any star-shaped open set, then we have

Hp(U) = (0) for p > 0 and H0(U) = R. Thus, for every p ≥ 1, every closed form ω ∈ Ap(U)
is exact.

Proof . Pick c so that U is star-shaped w.r.t. c and let g : U → U be the constant function
with value c. Then, we see that

g∗ω =

�
0 if ω ∈ Ap(U), with p ≥ 1,
ω(c) if ω ∈ A0(U),

where ω(c) denotes the constant function with value ω(c). The trick is to find a family of
linear maps, hp : Ap(U) → Ap−1(U), for p ≥ 1, with h0 = 0, such that

d ◦ hp + hp+1 ◦ d = id− g∗, p > 0

called a chain homotopy . Indeed, if ω ∈ Ap(U) is closed and p ≥ 1, we get dhpω = ω, so ω is
exact and if p = 0, we get h1dω = 0 = ω − ω(c), so ω is constant. It remains to find the hp,
which is not obvious. A construction of these maps can be found in Madsen and Tornehave
[100] (Chapter 3), Warner [147] (Chapter 4), Cartan [30] (Section 2) Morita [114] (Chapter
3).

In Section 8.2, we promote differential forms to manifolds. As preparation, note that
every open subset, U ⊆ R

n, is a manifold and that for every x ∈ U the tangent space, TxU ,
to U at x is canonically isomorphic to R

n. It follows that the tangent bundle, TU , and the
cotangent bundle, T ∗U , are trivial, namely, TU ∼= U × R

n and T ∗U ∼= U × (Rn)∗, so the
bundle,

p�
T ∗U ∼= U ×

p�
(Rn)∗,

is also trivial. Consequently, we can view Ap(U) as the set of smooth sections of the vector
bundle,

�
p T ∗(U). The generalization to manifolds is then to define the space of differential

p-forms on a manifold, M , as the space of smooth sections of the bundle,
�

p T ∗M .
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8.2 Differential Forms on Manifolds

Let M be any smooth manifold of dimension n. We define the vector bundle,
�
T ∗M , as

the direct sum bundle,
�

T ∗M =
n�

p=0

p�
T ∗M,

see Section 7.3 for details.

Definition 8.6 Let M be any smooth manifold of dimension n. The set, Ap(M), of smooth
differential p-forms onM is the set of smooth sections, Γ(M,

�
p T ∗M), of the bundle

�
p T ∗M

and the set, A∗(M), of all smooth differential forms on M is the set of smooth sections,
Γ(M,

�
T ∗M), of the bundle

�
T ∗M .

Observe that A0(M) ∼= C∞(M,R), the set of smooth functions on M , since the bundle�0 T ∗M is isomorphic to M × R and smooth sections of M × R are just graphs of smooth
functions on M . We also write C∞(M) for C∞(M,R). If ω ∈ A∗(M), we often write ωx for
ω(x).

Definition 8.6 is quite abstract and it is important to get a more down-to-earth feeling by
taking a local view of differential forms, namely, with respect to a chart. So, let (U,ϕ) be a
local chart on M , with ϕ : U → R

n, and let xi = pri ◦ϕ, the ith local coordinate (1 ≤ i ≤ n)
(see Section 3.2). Recall that by Proposition 3.4, for any p ∈ U , the vectors

�
∂

∂x1

�

p

, . . . ,

�
∂

∂xx

�

p

form a basis of the tangent space, TpM . Furthermore, by Proposition 3.9 and the discussion
following Proposition 3.8, the linear forms, (dx1)p, . . . , (dxn)p form a basis of T ∗

p
M , (where

(dxi)p, the differential of xi at p, is identified with the linear form such that dfp(v) = v(f),
for every smooth function f on U and every v ∈ TpM). Consequently, locally on U , every
k-form, ω ∈ Ak(M), can be written uniquely as

ω =
�

I

fIdxi1 ∧ · · · ∧ dxik
=

�

I

fIdxI , p ∈ U,

where I = {i1, . . . , ik} ⊆ {1, . . . , n}, with i1 < . . . < ik and dxI = dxi1 ∧ · · · ∧ dxik
.

Furthermore, each fI is a smooth function on U .

Remark: We define the set of smooth (r, s)-tensor fields as the set, Γ(M,T r,s(M)), of
smooth sections of the tensor bundle T r,s(M) = T⊗rM ⊗ (T ∗M)⊗s. Then, locally in a chart
(U,ϕ), every tensor field ω ∈ Γ(M,T r,s(M)) can be written uniquely as

ω =
�

f i1,...,ir
j1,...,js

�
∂

∂xi1

�
⊗ · · ·⊗

�
∂

∂xir

�
⊗ dxj1 ⊗ · · ·⊗ dxjs .
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The operations on the algebra,
�
T ∗M , yield operations on differential forms using point-

wise definitions. If ω, η ∈ A∗(M) and λ ∈ R, then for every x ∈ M ,

(ω + η)x = ωx + ηx
(λω)x = λωx

(ω ∧ η)x = ωx ∧ ηx.

Actually, it is necessary to check that the resulting forms are smooth but this is easily done
using charts. When, f ∈ A0(M), we write fω instead of f ∧ ω. It follows that A∗(M) is a
graded real algebra and a C∞(M)-module.

Proposition 8.1 generalizes immediately to manifolds.

Proposition 8.8 For all forms ω ∈ Ar(M) and η ∈ As(M), we have

η ∧ ω = (−1)pqω ∧ η.

For any smooth map, ϕ : M → N , between two manifolds, M and N , we have the
differential map, dϕ : TM → TN , also a smooth map and, for every p ∈ M , the map
dϕp : TpM → Tϕ(p)N is linear. As in Section 8.1, Proposition 22.21 gives us the formula

µ
�� k�

(dϕp)
�
�
(ωϕ(p))

�
(u1, . . . , uk) = µ(ωϕ(p))(dϕp(u1), . . . , dϕp(uk)), ω ∈ Ak(N),

for all u1, . . . , uk ∈ TpM . This gives us the behavior of
�

k(dϕp)� under the identification of�
k T ∗

p
M and Altk(TpM ;R) via the isomorphism µ. Here is the extension of Definition 8.5

to differential forms on a manifold.

Definition 8.7 For any smooth map, ϕ : M → N , between two smooth manifolds, M and
N , for every k ≥ 0, we define the map, ϕ∗ : Ak(N) → Ak(M), by

ϕ∗(ω)p(u1, . . . , uk) = ωϕ(p)(dϕp(u1), . . . , dϕp(uk)),

for all ω ∈ Ak(N), all p ∈ M , and all u1, . . . , uk ∈ TpM . We say that ϕ∗(ω) (for short, ϕ∗ω)
is the pull-back of ω by ϕ.

The maps ϕ∗ : Ak(N) → Ak(M) induce a map also denoted ϕ∗ : A∗(N) → A∗(M). Using
the chain rule, we check immediately that

id∗ = id,

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

We need to check that ϕ∗ω is smooth and for this, it is enough to check it locally on a
chart, (U,ϕ). On U , we know that ω ∈ Ak(M) can be written uniquely as

ω =
�

I

fIdxi1 ∧ · · · ∧ dxik
, p ∈ U,
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with fI smooth and it is easy to see (using the definition) that

ϕ∗ω =
�

I

(fI ◦ ϕ)d(xi1 ◦ ϕ) ∧ · · · ∧ d(xik
◦ ϕ),

which is smooth.

Remark: The fact that the pull-back of differential forms makes sense for arbitrary smooth
maps, ϕ : M → N , and not just diffeomorphisms is a major technical superiority of forms
over vector fields.

The next step is to define d on A∗(M). There are several ways to proceed but since
we already considered the special case where M is an open subset of Rn, we proceed using
charts.

Given a smooth manifold, M , of dimension n, let (U,ϕ) be any chart on M . For any
ω ∈ Ak(M) and any p ∈ U , define (dω)p as follows: If k = 0, that is, ω ∈ C∞(M), let

(dω)p = dωp, the differential of ω at p

and if k ≥ 1, let
(dω)p = ϕ∗�d((ϕ−1)∗ω)ϕ(p)

�
p
,

where d is the exterior differential on Ak(ϕ(U)). More explicitly, (dω)p is given by

(dω)p(u1, . . . , uk+1) = d((ϕ−1)∗ω)ϕ(p)(dϕp(u1), . . . , dϕp(uk+1)),

for every p ∈ U and all u1, . . . , uk+1 ∈ TpM . Observe that the above formula is still valid
when k = 0 if we interpret the symbold d in d((ϕ−1)∗ω)ϕ(p) = d(ω◦ϕ−1)ϕ(p) as the differential.

Since ϕ−1 : ϕ(U) → U is map whose domain is an open subset, W = ϕ(U), of Rn, the
form (ϕ−1)∗ω is a differential form in A∗(W ), so d((ϕ−1)∗ω) is well-defined. We need to
check that this definition does not depend on the chart, (U,ϕ). For any other chart, (V,ψ),
with U ∩ V �= ∅, the map θ = ψ ◦ ϕ−1 is a diffeomorphism between the two open subsets,
ϕ(U ∩ V ) and ψ(U ∩ V ), and ψ = θ ◦ ϕ. Let x = ϕ(p). We need to check that

d((ϕ−1)∗ω)x(dϕp(u1), . . . , dϕp(uk+1)) = d((ψ−1)∗ω)x(dψp(u1), . . . , dψp(uk+1)),

for every p ∈ U ∩ V and all u1, . . . , uk+1 ∈ TpM . However,

d((ψ−1)∗ω)x(dψp(u1), . . . , dψp(uk+1)) = d((ϕ−1 ◦ θ−1)∗ω)x(d(θ ◦ϕ)p(u1), . . . , d(θ ◦ϕ)p(uk+1)),

and since
(ϕ−1 ◦ θ−1)∗ = (θ−1)∗ ◦ (ϕ−1)∗

and, by Proposition 8.6 (iii),

d(((θ−1)∗ ◦ (ϕ−1)∗)ω) = d((θ−1)∗((ϕ−1)∗ω)) = (θ−1)∗(d((ϕ−1)∗ω)),
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we get

d((ϕ−1 ◦ θ−1)∗ω)x(d(θ ◦ ϕ)p(u1), . . . , d(θ ◦ ϕ)p(uk+1))

= (θ−1)∗(d((ϕ−1)∗ω))θ(x)(d(θ ◦ ϕ)p(u1), . . . , d(θ ◦ ϕ)p(uk+1))

and then

(θ−1)∗(d((ϕ−1)∗ω))θ(x)(d(θ ◦ ϕ)p(u1), . . . , d(θ ◦ ϕ)p(uk+1))

= d((ϕ−1)∗ω)x((dθ
−1)θ(x)(d(θ ◦ ϕ)p(u1)), . . . , (dθ

−1)θ(x)(d(θ ◦ ϕ)p(uk+1))).

As (dθ−1)θ(x)(d(θ ◦ ϕ)p(u1)) = d(θ−1 ◦ (θ ◦ ϕ))p(ui) = dϕp(ui), by the chain rule, we obtain

d((ψ−1)∗ω)x(dψp(u1), . . . , dψp(uk+1)) = d((ϕ−1)∗ω)x(dϕp(u1), . . . , dϕp(uk+1)),

as desired.

Observe that (dω)p is smooth on U and as our definition of (dω)p does not depend on
the choice of a chart, the forms (dω) � U agree on overlaps and yield a differential form, dω,
defined on the whole of M . Thus, we can make the following definition:

Definition 8.8 If M is any smooth manifold, there is a linear map, d : Ak(M) → Ak+1(M),
for every k ≥ 0, such that, for every ω ∈ Ak(M), for every chart, (U,ϕ), for every p ∈ U , if
k = 0, that is, ω ∈ C∞(M), then

(dω)p = dωp, the differential of ω at p,

else if k ≥ 1, then
(dω)p = ϕ∗�d((ϕ−1)∗ω)ϕ(p)

�
p
,

where d is the exterior differential on Ak(ϕ(U)) from Definition 8.3. We obtain a linar map,
d : A∗(M) → A∗(M), called exterior differentiation.

Propositions 8.3, 8.4 and 8.6 generalize to manifolds.

Proposition 8.9 Let M and N be smooth manifolds and let ϕ : M → N be a smooth map.

(1) For all ω ∈ Ar(M) and all η ∈ As(M),

d(ω ∧ η) = dω ∧ η + (−1)rω ∧ dη.

(2) For every k ≥ 0, the composition Ak(M)
d−→ Ak+1(M)

d−→ Ak+2(M) is identically
zero, that is,

d ◦ d = 0.

(3) ϕ∗(ω ∧ η) = ϕ∗ω ∧ ϕ∗η, for all ω ∈ Ar(N) and all η ∈ As(N).
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(4) ϕ∗(f) = f ◦ ϕ, for all f ∈ A0(N).

(5) dϕ∗(ω) = ϕ∗(dω), for all ω ∈ Ak(N), that is, the following diagram commutes for all
k ≥ 0:

Ak(N)
ϕ
∗
��

d

��

Ak(M)

d

��

Ak+1(N)
ϕ
∗
�� Ak+1(M).

Proof . It is enough to prove these properties in a chart, (U,ϕ), which is easy. We only check
(2). We have

(d(dω))p = d
�
ϕ∗�d((ϕ−1)∗ω)

��
p

= ϕ∗
�
d(ϕ−1)∗

�
ϕ∗�d((ϕ−1)∗ω)

��
ϕ(p)

�

p

= ϕ∗
�
d
�
d((ϕ−1)∗ω)

�
ϕ(p)

�

p

= 0,

as (ϕ−1)∗ ◦ϕ∗ = (ϕ ◦ϕ−1)∗ = id∗ = id and d ◦ d = 0 on forms in Ak(ϕ(U)), with ϕ(U) ⊆ R
n.

As a consequence, Definition 8.4 of the de Rham cohomology generalizes to manifolds.
For every manifold, M , we have the de Rham complex,

A0(M)
d−→ A1(M) −→ · · · −→ Ak−1(M)

d−→ Ak(M)
d−→ Ak+1(M) −→ · · ·

and we can define the cohomology groups , Hk

DR(M), and the graded cohomology algebra,
H•

DR(M). For every k ≥ 0, let

Zk(M) = {ω ∈ Ak(M) | dω = 0} = Ker d : Ak(M) −→ Ak+1(M),

be the vector space of closed k-forms and for every k ≥ 1, let

Bk(M) = {ω ∈ Ak(M) | ∃η ∈ Ak−1(M), ω = dη} = Im d : Ak−1(M) −→ Ak(M),

be the vector space of exact k-forms and set B0(M) = (0). Then, for every k ≥ 0, we define
the kth de Rham cohomology group of M as the quotient space

Hk

DR(M) = Zk(M)/Bk(M).

The real vector space, H•
DR(M) =

�
k≥0 H

k

DR(M), is called the de Rham cohomology algebra
of M . We often drop the subscript, DR, when no confusion arises. Every smooth map,
ϕ : M → N , between two manifolds induces an algebra map, ϕ∗ : H•(N) → H•(M).

Another important property of the exterior differential is that it is a local operator , which
means that the value of dω at p only depends of the values of ω near p. More precisely, we
have
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Proposition 8.10 Let M be a smooth manifold. For every open subset, U ⊆ M , for any
two differential forms, ω, η ∈ A∗(M), if ω � U = η � U , then (dω) � U = (dη) � U .

Proof . By linearity, it is enough to show that if ω � U = 0, then (dω) � U = 0. The crucial
ingredient is the existence of “bump functions”. By Proposition 3.24 applied to the constant
function with value 1, for every p ∈ U , there some open subset, V ⊆ U , containing p and a
smooth function, f : M → R, such that supp f ⊆ U and f ≡ 1 on V . Consequently, fω is a
smooth differential form which is identically zero and by Proposition 8.9 (1),

d(fω) = df ∧ ω + fdω,

which, evaluated ap p, yields
0 = 0 ∧ ωp + 1dωp,

that is, dωp = 0, as claimed.

As in the case of differential forms on R
n, the operator d is uniquely determined by the

properties of Theorem 8.5.

Theorem 8.11 Let M be a smooth manifold. There is a unique local linear map,
d : A∗(M) → A∗(M), with d = (dk) and dk : Ak(M) → Ak+1(M) for every k ≥ 0, such that

(1) (df)p = dfp, where dfp is the differential of f at p ∈ M , for every
f ∈ A0(M) = C∞(M).

(2) d ◦ d = 0.

(3) For every ω ∈ Ar(M) and every η ∈ As(M),

d(ω ∧ η) = dω ∧ η + (−1)rω ∧ dη.

Proof . Existence has already been established. It is enough to prove uniqueness locally. If
(U,ϕ) is any chart and xi = pri ◦ ϕ are the corresponding local coordinate maps, we know
that every k-form, ω ∈ Ak(M), can be written uniquely as

ω =
�

I

fIdxi1 ∧ · · · ∧ dxik
p ∈ U.

Consequently, the proof of Theorem 8.5 will go through if we can show that ddxij � U = 0,
since then,

d(fIdxi1 ∧ · · · ∧ dxik
) = dfI ∧ dxi1 ∧ · · · ∧ dxik

.

The problem is that dxij is only defined on U . However, using Proposition 3.24 again,
for every p ∈ U , there some open subset, V ⊆ U , containing p and a smooth function,
f : M → R, such that supp f ⊆ U and f ≡ 1 on V . Then, fxij is a smooth form defined on
M such that fxij � V = xij � V , so by Proposition 8.10 (applied twice),

0 = dd(fxij) � V = ddxij � V,
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which concludes the proof.

Remark: A closer look at the proof of Theorem 8.11 shows that it is enough to assume
ddω = 0 on forms ω ∈ A0(M) = C∞(M).

Smooth differential forms can also be defined in terms of alternating C∞(M)-multilinear
maps on smooth vector fields. Let ω ∈ Ap(M) be any smooth k-form on M . Then, ω induces
an alternating multilinear map

ω : X(M)× · · ·× X(M)� �� �
k

−→ C∞(M)

as follows: For any k smooth vector fields, X1, . . . , Xk ∈ X(M),

ω(X1, . . . , Xk)(p) = ωp(X1(p), . . . , Xk(p)).

This map is obviously alternating and R-linear, but it is also C∞(M)-linear, since for every
f ∈ C∞(M),

ω(X1, . . . , fXi, . . . Xk)(p) = ωp(X1(p), . . . , f(p)Xi(p), . . . , Xk(p))

= f(p)ωp(X1(p), . . . , Xi(p), . . . , Xk(p))

= (fω)p(X1(p), . . . , Xi(p), . . . , Xk(p)).

(Recall, that the set of smooth vector fields, X(M), is a real vector space and a C∞(M)-
module.)

Interestingly, every alternating C∞(M)-multilinear maps on smooth vector fields deter-
mines a differential form. This is because ω(X1, . . . , Xk)(p) only depends on the values of
X1, . . . , Xk at p.

Proposition 8.12 Let M be a smooth manifold. For every k ≥ 0, there is an isomor-
phism between the space of k-forms, Ak(M), and the space, Altk

C∞(M)(X(M)), of alternating
C∞(M)-multilinear maps on smooth vector fields. That is,

Ak(M) ∼= Altk
C∞(M)(X(M)),

viewed as C∞(M)-modules.

Proof . Let Φ : X(M)× · · ·× X(M)� �� �
k

−→ C∞(M) be an alternating C∞(M)-multilinear map.

First, we prove that for any vector fields X1, . . . , Xk and Y1, . . . , Yk, for every p ∈ M , if
Xi(p) = Yi(p), then

Φ(X1, . . . , Xk)(p) = Φ(Y1, . . . , Yk)(p).
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Observe that

Φ(X1, . . . , Xk)− Φ(Y1, . . . , Yk) = Φ(X1 − Y1, X2, . . . , Xk) + Φ(Y1, X2 − Y2, X3, . . . , Xk)

= + Φ(Y1, Y2, X3 − Y3, . . . , Xk) + · · ·
= + Φ(Y1, . . . , Yk−2, Xk−1 − Yk−1, Xk)

= + · · ·+ Φ(Y1, . . . , Yk−1, Xk − Yk).

As a consequence, it is enough to prove that if Xi(p) = 0, for some i, then

Φ(X1, . . . , Xk)(p) = 0.

Without loss of generality, assume i = 1. In any local chart, (U,ϕ), near p, we can write

X1 =
n�

i=1

fi
∂

∂xi

,

and as Xi(p) = 0, we have fi(p) = 0, for i = 1, . . . , n. Since the expression on the right-hand
side is only defined on U , we extend it using Proposition 3.24, once again. There is some
open subset, V ⊆ U , containing p and a smooth function, h : M → R, such that supph ⊆ U
and h ≡ 1 on V . Then, we let hi = hfi, a smooth function on M , Yi = h ∂

∂xi
, a smooth vector

field on M , and we have hi � V = fi � V and Yi � V = ∂

∂xi
� V . Now, it it obvious that

X1 =
n�

i=1

hiYi + (1− h2)X1,

so, as Φ is C∞(M)-multilinear, hi(p) = 0 and h(p) = 1, we get

Φ(X1, X2, . . . , Xk)(p) = Φ(
n�

i=1

hiYi + (1− h2)X1, X2, . . . , Xk)(p)

=
n�

i=1

hi(p)Φ(Yi, X2, . . . , Xk)(p) + (1− h2(p))Φ(X1, X2, . . . , Xk)(p) = 0,

as claimed.

Next, we show that Φ induces a smooth differential form. For every p ∈ M , for any
u1, . . . , uk ∈ TpM , we can pick smooth functions, fi, equal to 1 near p and 0 outside some
open near p so that we get smooth vector fields, X1, . . . , Xk, with Xk(p) = uk. We set

ωp(u1, . . . , uk) = Φ(X1, . . . , Xk)(p).

As we proved that Φ(X1, . . . , Xk)(p) only depends on X1(p) = u1, . . . , Xk(p) = uk, the
function ωp is well defined and it is easy to check that it is smooth. Therefore, the map,
Φ �→ ω, just defined is indeed an isomorphism.

Remarks:
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(1) The space, HomC∞(M)(X(M), C∞(M)), of all C∞(M)-linear maps, X(M) −→ C∞(M),
is also a C∞(M)-module called the dual of X(M) and sometimes denoted X∗(M).
Proposition 8.12 shows that as C∞(M)-modules,

A1(M) ∼= HomC∞(M)(X(M), C∞(M)) = X∗(M).

(2) A result analogous to Proposition 8.12 holds for tensor fields. Indeed, there is an
isomorphism between the set of tensor fields, Γ(M,T r,s(M)), and the set of C∞(M)-
multilinear maps,

Φ : A1(M)× · · ·×A1(M)� �� �
r

×X(M)× · · ·× X(M)� �� �
s

−→ C∞(M),

where A1(M) and X(M) are C∞(M)-modules.

Recall from Section 3.3 (Definition 3.15) that for any function, f ∈ C∞(M), and every
vector field, X ∈ X(M), the Lie derivative, X[f ] (or X(f)) of f w.r.t. X is defined so that

X[f ]p = dfp(X(p)).

Also recall the notion of the Lie bracket , [X, Y ], of two vector fields (see Definition 3.16).
The interpretation of differential forms as C∞(M)-multilinear forms given by Proposition
8.12 yields the following formula for (dω)(X1, . . . , Xk+1), where the Xi are vector fields:

Proposition 8.13 Let M be a smooth manifold. For every k-form, ω ∈ Ak(M), we have

(dω)(X1, . . . , Xk+1) =
k+1�

i=1

(−1)i−1Xi[ω(X1, . . . ,�Xi, . . . , Xk+1)]

+
�

i<j

(−1)i+jω([Xi, Xj], X1, . . . ,�Xi, . . . , �Xj, . . . , Xk+1)],

for all vector fields, X1, . . . , Xk+1 ∈ X(M):

Proof sketch. First, one checks that the right-hand side of the formula in Proposition 8.13
is alternating and C∞(M)-multilinear. For this, use Proposition 3.13 (c). Consequently, by
Proposition 8.12, this expression defines a (k + 1)-form. Second, it is enough to check that
both sides of the equation agree on charts, (U,ϕ). Then, we know that dω can be written
uniquely as

ω =
�

I

fIdxi1 ∧ · · · ∧ dxik
p ∈ U.

Also, as differential forms are C∞(M)-multilinear, it is enough to consider vector fields of
the form Xi =

∂

∂xji
. However, for such vector fields, [Xi, Xj] = 0, and then it is a simple

matter to check that the equation holds. For more details, see Morita [114] (Chapter 2).
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In particular, when k = 1, Proposition 8.13 yields the often used formula:

dω(X, Y ) = X[ω(Y )]− Y [ω(X)]− ω([X, Y ]).

There are other ways of proving the formula of Proposition 8.13, for instance, using Lie
derivatives.

Before considering the Lie derivative of differential forms, LXω, we define interior multi-
plication by a vector field, i(X)(ω). We will see shortly that there is a relationship between
LX , i(X) and d, known as Cartan’s Formula.

Definition 8.9 Let M be a smooth manifold. For every vector field, X ∈ X(M), for all
k ≥ 1, there is a linear map, i(X) : Ak(M) → Ak−1(M), defined so that, for all ω ∈ Ak(M),
for all p ∈ M , for all u1, . . . , uk−1 ∈ TpM ,

(i(X)ω)p(u1, . . . , uk−1) = ωp(Xp, u1, . . . , uk−1).

Obviously, i(X) is C∞(M)-linear in X and it is easy to check that i(X)ω is indeed a
smooth (k − 1)-form. When k = 0, we set i(X)ω = 0. Observe that i(X)ω is also given by

(i(X)ω)p = i(Xp)ωp, p ∈ M,

where i(Xp) is the interior product (or insertion operator) defined in Section 22.17 (with
i(Xp)ωp equal to our right hook, ωp � Xp). As a consequence, by Proposition 22.28, the
operator i(X) is an anti-derivation of degree −1, that is, we have

i(X)(ω ∧ η) = (i(X)ω) ∧ η + (−1)rω ∧ (i(X)η),

for all ω ∈ Ar(M) and all η ∈ As(M).

Remark: Other authors, including Marsden, use a left hook instead of a right hook and
denote i(X)ω as X � ω.

8.3 Lie Derivatives

We just saw in Section 8.2 that for any function, f ∈ C∞(M), and every vector field,
X ∈ X(M), the Lie derivative, X[f ] (or X(f)) of f w.r.t. X is defined so that

X[f ]p = dfp(Xp).

Recall from Definition 3.24 and the observation immediately following it that for any mani-
fold, M , given any two vector fields, X, Y ∈ X(M), the Lie derivative of X with respect to
Y is given by

(LX Y )p = lim
t−→0

�
Φ∗

t
Y
�
p
− Yp

t
=

d

dt

�
Φ∗

t
Y
�
p

����
t=0

,
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where Φt is the local one-parameter group associated with X (Φ is the global flow associated
with X, see Definition 3.23, Theorem 3.21 and the remarks following it) and Φ∗

t
is the

pull-back of the diffeomorphism Φt (see Definition 3.17). Furthermore, recall that

LXY = [X, Y ].

We claim that we also have

Xp[f ] = lim
t−→0

(Φ∗
t
f)(p)− f(p)

t
=

d

dt
(Φ∗

t
f)(p)

����
t=0

,

with Φ∗
t
f = f ◦ Φt (as usual for functions).

Recall from Section 3.5 that if Φ is the flow of X, then for every p ∈ M , the map,
t �→ Φt(p), is an integral curve of X through p, that is

Φ̇t(p) = X(Φt(p)), Φ0(p) = p,

in some open set containing p. In particular, Φ̇0(p) = Xp. Then, we have

lim
t−→0

(Φ∗
t
f)(p)− f(p)

t
= lim

t−→0

f(Φt(p))− f(Φ0(p))

t

=
d

dt
(f ◦ Φt(p))

����
t=0

= dfp(Φ̇0(p)) = dfp(Xp) = Xp[f ].

We would like to define the Lie derivative of differential forms (and tensor fields). This
can be done algebraically or in terms of flows, the two approaches are equivalent but it seems
more natural to give a definition using flows.

Definition 8.10 Let M be a smooth manifold. For every vector field, X ∈ X(M), for every
k-form, ω ∈ Ak(M), the Lie derivative of ω with respect to X, denoted LXω is given by

(LXω)p = lim
t−→0

�
Φ∗

t
ω
�
p
− ωp

t
=

d

dt

�
Φ∗

t
ω
�
p

����
t=0

,

where Φ∗
t
ω is the pull-back of ω along Φt (see Definition 8.7).

Obviously, LX : Ak(M) → Ak(M) is a linear map but it has many other interesting
properties. We can also define the Lie derivative on tensor fields as a map,
LX : Γ(M,T r,s(M)) → Γ(M,T r,s(M)), by requiring that for any tensor field,

α = X1 ⊗ · · ·⊗Xr ⊗ ω1 ⊗ · · ·⊗ ωs,
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where Xi ∈ X(M) and ωj ∈ A1(M),

Φ∗
t
α = Φ∗

t
X1 ⊗ · · ·⊗ Φ∗

t
Xr ⊗ Φ∗

t
ω1 ⊗ · · ·⊗ Φ∗

t
ωs,

where Φ∗
t
Xi is the pull-back of the vector field, Xi, and Φ∗

t
ωj is the pull-back of one-form,

ωj, and then setting

(LXα)p = lim
t−→0

�
Φ∗

t
α
�
p
− αp

t
=

d

dt

�
Φ∗

t
α
�
p

����
t=0

.

So, as long we can define the “right” notion of pull-back, the formula giving the Lie derivative
of a function, a vector field, a differential form and more generally, a tensor field, is the same.

The Lie derivative of tensors is used in most areas of mechanics, for example in elasticity
(the rate of strain tensor) and in fluid dynamics.

We now state, mostly without proofs, a number of properties of Lie derivatives. Most
of these proofs are fairly straightforward computations, often tedious, and can be found in
most texts, including Warner [147], Morita [114] and Gallot, Hullin and Lafontaine [60].

Proposition 8.14 Let M be a smooth manifold. For every vector field, X ∈ X(M), the
following properties hold:

(1) For all ω ∈ Ar(M) and all η ∈ As(M),

LX(ω ∧ η) = (LXω) ∧ η + ω ∧ (LXη),

that is, LX is a derivation.

(2) For all ω ∈ Ak(M), for all Y1, . . . , Yk ∈ X(M),

LX(ω(Y1, . . . , Yk)) = (LXω)(Y1, . . . , Yk) +
k�

i=1

ω(Y1, . . . , Yi−1, LXYi, Yi+1, . . . , Yk).

(3) The Lie derivative commutes with d:

LX ◦ d = d ◦ LX .

Proof . We only prove (2). First, we claim that if ϕ : M → M is a diffeomorphism, then for
every ω ∈ Ak(M), for all X1, . . . , Xk ∈ X(M),

(ϕ∗ω)(X1, . . . , Xk) = ϕ∗(ω((ϕ−1)∗X1, . . . , (ϕ
−1)∗Xk)), (∗)

where (ϕ−1)∗Xi is the pull-back of the vector field, Xi (also equal to the push-forward, ϕ∗Xi,
of Xi, see Definition 3.17). Recall that

((ϕ−1)∗Y )p = dϕϕ−1(p)(Yϕ−1(p)),
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for any vector field, Y . Then, for every p ∈ M , we have

(ϕ∗ω(X1, . . . , Xk))(p) = ωϕ(p)(dϕp(X1(p)), . . . , dϕp(Xk(p)))

= ωϕ(p)(dϕϕ−1(ϕ(p))(X1(ϕ
−1(ϕ(p))), . . . , dϕϕ−1(ϕ(p))(Xk(ϕ

−1(ϕ(p))))

= ωϕ(p)(((ϕ
−1)∗X1)ϕ(p), . . . , ((ϕ

−1)∗Xk)ϕ(p))

= ((ω((ϕ−1)∗X1, . . . , (ϕ
−1)∗Xk)) ◦ ϕ)(p)

= ϕ∗(ω((ϕ−1)∗X1, . . . , (ϕ
−1)∗Xk))(p),

since for any function, g ∈ C∞(M), we have ϕ∗g = g ◦ ϕ.

We know that

Xp[f ] = lim
t−→0

(Φ∗
t
f)(p)− f(p)

t

and for any vector field, Y ,

[X, Y ]p = (LXY )p = lim
t−→0

�
Φ∗

t
Y
�
p
− Yp

t
.

Since the one-parameter group associated with −X is Φ−t (this follows from Φ−t ◦Φt = id),
we have

lim
t−→0

�
Φ∗

−t
Y
�
p
− Yp

t
= −[X, Y ]p.

Now, using Φ−1
t = Φ−t and (∗), we have

(LXω)(Y1, . . . , Yk) = lim
t−→0

(Φ∗
t
ω)(Y1, . . . , Yk)− ω(Y1, . . . , Yk)

t

= lim
t−→0

Φ∗
t
(ω(Φ∗

−t
Y1, . . . ,Φ∗

−t
Yk))− ω(Y1, . . . , Yk)

t

= lim
t−→0

Φ∗
t
(ω(Φ∗

−t
Y1, . . . ,Φ∗

−t
Yk))− Φ∗

t
(ω(Y1, . . . , Yk))

t

+ lim
t−→0

Φ∗
t
(ω(Y1, . . . , Yk))− ω(Y1, . . . , Yk)

t
.

Call the first term A and the second term B. Then, as

Xp[f ] = lim
t−→0

(Φ∗
t
f)(p)− f(p)

t
,

we have

B = X[ω(Y1, . . . , Yk)].
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As to A, we have

A = lim
t−→0

Φ∗
t
(ω(Φ∗

−t
Y1, . . . ,Φ∗

−t
Yk))− Φ∗

t
(ω(Y1, . . . , Yk))

t

= lim
t−→0

Φ∗
t

�
ω(Φ∗

−t
Y1, . . . ,Φ∗

−t
Yk)− ω(Y1, . . . , Yk)

t

�

= lim
t−→0

Φ∗
t

�
ω(Φ∗

−t
Y1, . . . ,Φ∗

−t
Yk)− ω(Y1,Φ∗

−t
Y2, . . . ,Φ∗

−t
Yk)

t

�

+ lim
t−→0

Φ∗
t

�
ω(Y1,Φ∗

−t
Y2, . . . ,Φ∗

−t
Yk)− ω(Y1, Y2,Φ∗

−t
Y3, . . . ,Φ∗

−t
Yk)

t

�

+ · · ·+ lim
t−→0

Φ∗
t

�
ω(Y1, . . . , Yk−1,Φ∗

−t
Yk)− ω(Y1, . . . , Yk)

t

�

=
k�

i=1

ω(Y1, . . . ,−[X, Yi], . . . , Yk).

When we add up A and B, we get

A+B = X[ω(Y1, . . . , Yk)]−
k�

i=1

ω(Y1, . . . , [X, Yi], . . . , Yk)

= (LXω)(Y1, . . . , Yk),

which finishes the proof.

Part (2) of Proposition 8.14 shows that the Lie derivative of a differential form can be
defined in terms of the Lie derivatives of functions and vector fields:

(LXω)(Y1, . . . , Yk) = LX(ω(Y1, . . . , Yk))−
k�

i=1

ω(Y1, . . . , Yi−1, LXYi, Yi+1, . . . , Yk)

= X[ω(Y1, . . . , Yk)]−
k�

i=1

ω(Y1, . . . , Yi−1, [X, Yi], Yi+1, . . . , Yk).

The following proposition is known as Cartan’s Formula:

Proposition 8.15 (Cartan’s Formula) Let M be a smooth manifold. For every vector field,
X ∈ X(M), for every ω ∈ Ak(M), we have

LXω = i(X)dω + d(i(X)ω),

that is, LX = i(X) ◦ d+ d ◦ i(X).
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Proof . If k = 0, then LXf = X[f ] = df(X) for a function, f , and on the other hand,
i(X)f = 0 and i(X)df = df(X), so the equation holds. If k ≥ 1, then we have

(i(X)dω)(X1, . . . , Xk) = dω(X,X1, . . . , Xk)

= X[ω(X1, . . . , Xk)] +
k�

i=1

(−1)iXi[ω(X,X1, . . . ,�Xi, . . . , Xk)]

+
k�

j=1

(−1)jω([X,Xj], X1, . . . , �Xj, . . . , Xk)

+
�

i<j

(−1)i+jω([Xi, Xj], X,X1, . . . ,�Xi, . . . , �Xj, . . . , Xk).

On the other hand,

(di(X)ω)(X1, . . . , Xk) =
k�

i=1

(−1)i−1Xi[ω(X,X1, . . . ,�Xi, . . . , Xk)]

+
�

i<j

(−1)i+jω(X, [Xi, Xj], X1, . . . ,�Xi, . . . , �Xj, . . . , Xk).

Adding up these two equations, we get

(i(X)dω + di(X))ω(X1, . . . , Xk) = X[ω(X1, . . . , Xk)]

+
k�

i=1

(−1)iω([X,Xi], X1, . . . ,�Xi, . . . , Xk)

= X[ω(X1, . . . , Xk)]−
k�

i=1

ω(X1, . . . , [X,Xi], . . . , Xk) = (LXω)(X1, . . . , Xk),

as claimed.

The following proposition states more useful identities, some of which can be proved
using Cartan’s formula:

Proposition 8.16 Let M be a smooth manifold. For all vector fields, X, Y ∈ X(M), for all
ω ∈ Ak(M), we have

(1) LXi(Y )− i(Y )LX = i([X, Y ]).

(2) LXLY ω − LYLXω = L[X,Y ]ω.

(3) LXi(X)ω = i(X)LXω.

(4) LfXω = fLXω + df ∧ i(X)ω, for all f ∈ C∞(M).
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(5) For any diffeomorphism, ϕ : M → N , for all Z ∈ X(N) and all β ∈ Ak(N),

ϕ∗LZβ = Lϕ∗Zϕ
∗β.

Finally, here is a proposition about the Lie derivative of tensor fields. Obviously, tensor
product and contraction of tensor fields are defined pointwise on fibres, that is

(α⊗ β)p = αp ⊗ βp

(ci,jα)p = ci,jαp,

for all p ∈ M , where ci,j is the contraction operator of Definition 22.5.

Proposition 8.17 Let M be a smooth manifold. For every vector field, X ∈ X(M), the
Lie derivative, LX : Γ(M,T •,•(M)) → Γ(M,T •,•(M)), is the unique local linear operator
satisfying the following properties:

(1) LXf = X[f ] = df(X), for all f ∈ C∞(M).

(2) LXY = [X, Y ], for all Y ∈ X(M).

(3) LX(α ⊗ β) = (LXα) ⊗ β + α ⊗ (LXβ), for all tensor fields, α ∈ Γ(M,T r1,s1(M)) and
β ∈ Γ(M,T r2,s2(M)), that is, LX is a derivation.

(4) For all tensor fields α ∈ Γ(M,T r,s(M)), with r, s > 0, for every contraction operator,
ci,j,

LX(ci,j(α)) = ci,j(LXα).

The proof of Proposition 8.17 can be found in Gallot, Hullin and Lafontaine [60] (Chapter
1). The following proposition is also useful:

Proposition 8.18 For every (0, q)-tensor, S ∈ Γ(M, (T ∗)⊗q(M)), we have

(LXS)(X1, . . . , Xq) = X[S(X1, . . . , Xq)]−
q�

i=1

S(X1, . . . , [X,Xi], . . . , Xq),

for all X1, . . . , Xq, X ∈ X(M).

There are situations in differential geometry where it is convenient to deal with differential
forms taking values in a vector space. This happens when we consider connections and the
curvature form on vector bundles and principal bundles and when we study Lie groups,
where differential forms valued in a Lie algebra occur naturally.
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8.4 Vector-Valued Differential Forms

Let us go back for a moment to differential forms defined on some open subset of Rn. In
Section 8.1, a differential form is defined as a smooth map, ω : U →

�
p(Rn)∗, and since we

have a canonical isomorphism,

µ :
p�
(Rn)∗ ∼= Altp(Rn;R),

such differential forms are real-valued. Now, let F be any normed vector space, possibly
infinite dimensional. Then, Altp(Rn;F ) is also a normed vector space and by Proposition
22.33, we have a canonical isomorphism

µ :

�
p�
(Rn)∗

�
⊗ F −→ Altp(Rn;F ).

Then, it is natural to define differential forms with values in F as smooth maps,
ω : U → Altp(Rn;F ). Actually, we can even replace R

n with any normed vector space, even
infinite dimensional, as in Cartan [30], but we do not need such generality for our purposes.

Definition 8.11 Let F by any normed vector space. Given any open subset, U , of Rn, a
smooth differential p-form on U with values in F , for short, p-form on U , is any smooth
function, ω : U → Altp(Rn;F ). The vector space of all p-forms on U is denoted Ap(U ;F ).
The vector space, A∗(U ;F ) =

�
p≥0 Ap(U ;F ), is the set of differential forms on U with

values in F .

Observe that A0(U ;F ) = C∞(U, F ), the vector space of smooth functions on U with
values in F and A1(U ;F ) = C∞(U,Hom(Rn, F )), the set of smooth functions from U to the
set of linear maps from R

n to F . Also, Ap(U ;F ) = (0) for p > n.

Of course, we would like to have a “good” notion of exterior differential and we would like
as many properties of “ordinary” differential forms as possible to remain valid. As will see in
our somewhat sketchy presentation, these goals can be achieved except for some properties
of the exterior product.

Using the isomorphism

µ :

�
p�
(Rn)∗

�
⊗ F −→ Altp(Rn;F )

and Proposition 22.34, we obtain a convenient expression for differential forms in A∗(U ;F ).
If (e1, . . . , en) is any basis of Rn and (e∗1, . . . , e

∗
n
) is its dual basis, then every differential

p-form, ω ∈ Ap(U ;F ), can be written uniquely as

ω(x) =
�

I

e∗
i1
∧ · · · ∧ e∗

ip
⊗ fI(x) =

�

I

e∗
I
⊗ fI(x) x ∈ U,
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where each fI : U → F is a smooth function on U . By Proposition 22.35, the above property
can be restated as the fact every differential p-form, ω ∈ Ap(U ;F ), can be written uniquely
as

ω(x) =
�

I

e∗
i1
∧ · · · ∧ e∗

ip
· fI(x), x ∈ U.

where each fI : U → F is a smooth function on U .

As in Section 22.15 (following H. Cartan [30]) in order to define a multiplication on
differential forms we use a bilinear form, Φ : F × G → H. Then, we can define a multipli-
cation, ∧Φ, directly on alternating multilinear maps as follows: For f ∈ Altm(Rn;F ) and
g ∈ Altn(Rn;G),

(f ∧Φ g)(u1, . . . , um+n) =
�

σ∈shuffle(m,n)

sgn(σ)Φ(f(uσ(1), . . . , uσ(m)), g(uσ(m+1), . . . , uσ(m+n))),

where shuffle(m,n) consists of all (m,n)-“shuffles”, that is, permutations, σ, of {1, . . .m+n},
such that σ(1) < · · · < σ(m) and σ(m+ 1) < · · · < σ(m+ n).

Then, we obtain a multiplication,

∧Φ : Ap(U ;F )×Aq(U ;G) → Ap+q(U ;H),

defined so that, for any differential forms, ω ∈ Ap(U ;F ) and η ∈ Aq(U ;G),

(ω ∧Φ η)x = ωx ∧Φ ηx, x ∈ U.

In general, not much can be said about ∧Φ unless Φ has some additional properties. In
particular, ∧Φ is generally not associative. In particular, there is no analog of Proposition 8.1.
For simplicity of notation, we write ∧ for ∧Φ. Using Φ, we can also define a multiplication,

· : Ap(U ;F )×A0(U ;G) → Ap(U ;H),

given by
(ω · f)x(u1, . . . , up) = Φ(ωx(u1, . . . , up), f(x)),

for all x ∈ U and all u1, . . . , up ∈ R
n. This multiplication will be used in the case where

F = R and G = H, to obtain a normal form for differential forms.

Generalizing d is no problem. Observe that since a differential p-form is a smooth map,
ω : U → Altp(Rn;F ), its derivative is a map,

ω� : U → Hom(Rn,Altp(Rn;F )),

such that ω�
x
is a linear map from R

n to Altp(Rn;F ), for every x ∈ U . We can view ω�
x
as

a multilinear map, ω�
x
: (Rn)p+1 → F , which is alternating in its last p arguments. As in

Section 8.1, the exterior derivative, (dω)x, is obtained by making ω�
x
into an alternating map

in all of its p+ 1 arguments.
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Definition 8.12 For every p ≥ 0, the exterior differential , d : Ap(U ;F ) → Ap+1(U ;F ), is
given by

(dω)x(u1, . . . , up+1) =
p+1�

i=1

(−1)i−1ω�
x
(ui)(u1, . . . , �ui, . . . , up+1),

for all ω ∈ Ap(U ;F ) and all u1, . . . , up+1 ∈ R
n, where the hat over the argument ui means

that it should be omitted.

For any smooth function, f ∈ A0(U ;F ) = C∞(U, F ), we get

dfx(u) = f �
x
(u).

Therefore, for smooth functions, the exterior differential, df , coincides with the usual deriva-
tive, f �. The important observation following Definition 8.3 also applies here. If xi : U → R

is the restriction of pri to U , then x�
i
is the constant map given by

x�
i
(x) = pri, x ∈ U.

It follows that dxi = x�
i
is the constant function with value pri = e∗

i
. As a consequence, every

p-form, ω, can be uniquely written as

ωx =
�

I

dxi1 ∧ · · · ∧ dxip ⊗ fI(x)

where each fI : U → F is a smooth function on U . Using the multiplication, ·, induced by
the scalar multiplication in F (Φ(λ, f) = λf , with λ ∈ R and f ∈ F ), we see that every
p-form, ω, can be uniquely written as

ω =
�

I

dxi1 ∧ · · · ∧ dxip · fI .

As for real-valued functions, for any f ∈ A0(U ;F ) = C∞(U, F ), we have

dfx(u) =
n�

i=1

∂f

∂xi

(x)(u) e∗
i
,

and so,

df =
n�

i=1

dxi ·
∂f

∂xi

.

In general, Proposition 8.3 fails unless F is finite-dimensional (see below). However for
any arbitrary F , a weak form of Proposition 8.3 can be salvaged. Again, let Φ : F ×G → H
be a bilinear form, let · : Ap(U ;F ) ×A0(U ;G) → Ap(U ;H) be as defined before Definition
8.12 and let ∧Φ be the wedge product associated with Φ. The following fact is proved in
Cartan [30] (Section 2.4):
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Proposition 8.19 For all ω ∈ Ap(U ;F ) and all f ∈ A0(U ;G), we have

d(ω · f) = (dω) · f + ω ∧Φ df.

Fortunately, d ◦ d still vanishes but this requires a completely different proof since we
can’t rely on Proposition 8.2 (see Cartan [30], Section 2.5). Similarly, Proposition 8.2 holds
but a different proof is needed.

Proposition 8.20 The composition Ap(U ;F )
d−→ Ap+1(U ;F )

d−→ Ap+2(U ;F ) is identi-
cally zero for every p ≥ 0, that is,

d ◦ d = 0,

or using superscripts, dp+1 ◦ dp = 0.

To generalize Proposition 8.2, we use Proposition 8.19 with the product, ·, and the wedge
product, ∧Φ, induced by the bilinear form, Φ, given by scalar multiplication in F , that, is
Φ(λ, f) = λf , for all λ ∈ R and all f ∈ F .

Proposition 8.21 For every p form, ω ∈ Ap(U ;F ), with ω = dxi1 ∧ · · · ∧ dxip · f , we have

dω = dxi1 ∧ · · · ∧ dxip ∧F df,

where ∧ is the usual wedge product on real-valued forms and ∧F is the wedge product asso-
ciated with scalar multiplication in F .

More explicitly, for every x ∈ U , for all u1, . . . , up+1 ∈ R
n, we have

(dωx)(u1, . . . , up+1) =
p+1�

i=1

(−1)i−1(dxi1 ∧ · · · ∧ dxip)x(u1, . . . , �ui, . . . , up+1)dfx(ui).

If we use the fact that

df =
n�

i=1

dxi ·
∂f

∂xi

,

we see easily that

dω =
n�

j=1

dxi1 ∧ · · · ∧ dxip ∧ dxj ·
∂f

∂xj

,

the direct generalization of the real-valued case, except that the “coefficients” are functions
with values in F .

The pull-back of forms in A∗(V, F ) is defined as before. Luckily, Proposition 8.6 holds
(see Cartan [30], Section 2.8).
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Proposition 8.22 Let U ⊆ R
n and V ⊆ R

m be two open sets and let ϕ : U → V be a smooth
map. Then

(i) ϕ∗(ω ∧ η) = ϕ∗ω ∧ ϕ∗η, for all ω ∈ Ap(V ;F ) and all η ∈ Aq(V ;F ).

(ii) ϕ∗(f) = f ◦ ϕ, for all f ∈ A0(V ;F ).

(iii) dϕ∗(ω) = ϕ∗(dω), for all ω ∈ Ap(V ;F ), that is, the following diagram commutes for
all p ≥ 0:

Ap(V ;F )
ϕ
∗
��

d

��

Ap(U ;F )

d

��

Ap+1(V ;F )
ϕ
∗
�� Ap+1(U ;F ).

Let us now consider the special case where F has finite dimension m. Pick any basis,
(f1, . . . , fm), of F . Then, as every differential p-form, ω ∈ Ap(U ;F ), can be written uniquely
as

ω(x) =
�

I

e∗
i1
∧ · · · ∧ e∗

ip
· fI(x), x ∈ U.

where each fI : U → F is a smooth function on U , by expressing the fI over the basis,
(f1, . . . , fm), we see that ω can be written uniquely as

ω =
m�

i=1

ωi · fi,

where ω1, . . . ,ωm are smooth real-valued differential forms in Ap(U ;R) and we view fi as
the constant map with value fi from U to F . Then, as

ω�
x
(u) =

m�

i=1

(ω�
i
)x(u)fi,

for all u ∈ R
n, we see that

dω =
m�

i=1

dωi · fi.

Actually, because dω is defined independently of bases, the fi do not need to be linearly
independent; any choice of vectors and forms such that

ω =
k�

i=1

ωi · fi,

will do.



298 CHAPTER 8. DIFFERENTIAL FORMS

Given a bilinear map, Φ : F×G → H, a simple calculation shows that for all ω ∈ Ap(U ;F )
and all η ∈ Ap(U ;G), we have

ω ∧Φ η =
m�

i=1

m
��

j=1

ωi ∧ ηj · Φ(fi, gj),

with ω =
�

m

i=1 ωi ·fi and η =
�

m
�

j=1 ηj ·gj, where (f1, . . . , fm) is a basis of F and (g1, . . . , gm�)
is a basis of G. From this and Proposition 8.3, it follows that Proposition 8.3 holds for
finite-dimensional spaces.

Proposition 8.23 If F,G,H are finite dimensional and Φ : F ×G → H is a bilinear map,
then For all ω ∈ Ap(U ;F ) and all η ∈ Aq(U ;G),

d(ω ∧Φ η) = dω ∧Φ η + (−1)pω ∧Φ dη.

On the negative side, in general, Proposition 8.1 still fails.

A special case of interest is the case where F = G = H = g is a Lie algebra and
Φ(a, b) = [a, b], is the Lie bracket of g. In this case, using a basis, (f1, . . . , fr), of g if we
write ω =

�
i
αifi and η =

�
j
βjfj, we have

[ω, η] =
�

i,j

αi ∧ βj[fi, fj],

where, for simplicity of notation, we dropped the subscript, Φ, on [ω, η] and the multiplication
sign, ·. Let us figure out what [ω,ω] is for a one-form, ω ∈ A1(U, g). By definition,

[ω,ω] =
�

i,j

ωi ∧ ωj[fi, fj],

so

[ω,ω](u, v) =
�

i,j

(ωi ∧ ωj)(u, v)[fi, fj]

=
�

i,j

(ωi(u)ωj(v)− ωi(v)ωj(u))[fi, fj]

=
�

i,j

ωi(u)ωj(v)[fi, fj]−
�

i,j

ωi(v)ωj(u)[fi, fj]

= [
�

i

ωi(u)fi −
�

j

ωj(v)fj]− [
�

i

ωi(v)fi −
�

j

ωj(u)fj]

= [ω(u),ω(v)]− [ω(v),ω(u)]

= 2[ω(u),ω(v)].
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Therefore,
[ω,ω](u, v) = 2[ω(u),ω(v)].

Note that in general, [ω,ω] �= 0, because ω is vector valued. Of course, for real-valued forms,
[ω,ω] = 0. Using the Jacobi identity of the Lie algebra, we easily find that

[[ω,ω],ω] = 0.

The generalization of vector-valued differential forms to manifolds is no problem, except
that some results involving the wedge product fail for the same reason that they fail in the
case of forms on open subsets of Rn.

Given a smooth manifold, M , of dimension n and a vector space, F , the set, Ak(M ;F ),
of differential k-forms on M with values in F is the set of maps, p �→ ωp, with

ωp ∈
��

k T ∗
p
M

�
⊗ F ∼= Altk(TpM ;F ), which vary smoothly in p ∈ M . This means that the

map
p �→ ωp(X1(p), . . . , Xk(p))

is smooth for all vector fields, X1, . . . , Xk ∈ X(M). Using the operations on vector bundles
described in Section 7.3, we can define Ak(M ;F ) as the set of smooth sections of the vector

bundle,
��

k T ∗M
�
⊗ �F , that is, as

Ak(M ;F ) = Γ
�� k�

T ∗M
�
⊗ �F

�
,

where �F is the trivial vector bundle, �F = M × F . In view of Proposition 7.12 and since

Γ(�F ) ∼= C∞(M ;F ) and Ak(M) = Γ
��

k T ∗M
�
, we have

Ak(M ;F ) = Γ
�� k�

T ∗M
�
⊗ �F

�

∼= Γ
� k�

T ∗M
�
⊗C∞(M) Γ(�F )

= Ak(M)⊗C∞(M) C
∞(M ;F )

∼=
k�

C∞(M)

(Γ(TM))∗ ⊗C∞(M) C
∞(M ;F )

∼= Altk
C∞(M)(X(M);C∞(M ;F )).

with all of the spaces viewed as C∞(M)-modules. Therefore,

Ak(M ;F ) ∼= Ak(M)⊗C∞(M) C
∞(M ;F ) ∼= Altk

C∞(M)(X(M);C∞(M ;F )),

which reduces to Proposition 8.12 when F = R. The reader may want to carry out the
verification that the theory generalizes to manifolds on her/his own. In Section 11.1, we
will consider a generalization of the above situation where the trivial vector bundle, �F , is
replaced by any vector bundle, ξ = (E, π, B, V ), and where M = B.

In the next section, we consider some properties of differential forms on Lie groups.
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8.5 Differential Forms on Lie Groups and
Maurer-Cartan Forms

Given a Lie group, G, we saw in Section 5.2 that the set of left-invariant vector fields on G
is isomorphic to the Lie algebra, g = T1G, of G (where 1 denotes the identity element of G).
Recall that a vector field, X, on G is left-invariant iff

d(La)b(Xb) = XLab = Xab,

for all a, b ∈ G. In particular, for b = 1, we get

Xa = d(La)1(X1).

which shows that X is completely determined by its value at 1. The map, X �→ X(1), is an
isomorphism between left-invariant vector fields on G and g.

The above suggests looking at left-invariant differential forms on G. We will see that the
set of left-invariant one-forms on G is isomorphic to g∗, the dual of g, as a vector space.

Definition 8.13 Given a Lie group, G, a differential form, ω ∈ Ak(G), is left-invariant iff

L∗
a
ω = ω, for all a ∈ G,

where L∗
a
ω is the pull-back of ω by La (left multiplication by a). The left-invariant one-forms,

ω ∈ A1(G), are also called Maurer-Cartan forms .

For a one-form, ω ∈ A1(G), left-invariance means that

(L∗
a
ω)g(u) = ωLag(d(La)gu) = ωag(d(La)gu) = ωg(u),

for all a, g ∈ G and all u ∈ TgG. For a = g−1, we get

ωg(u) = ω1(d(Lg−1)gu) = ω1(d(L
−1
g
)gu),

which shows that ωg is completely determined by its value at g = 1.

We claim that the map, ω �→ ω1, is an isomorphism between the set of left-invariant
one-forms on G and g∗.

First, for any linear form, α ∈ g∗, the one-form, αL, given by

αL

g
(u) = α(d(L−1

g
)gu)

is left-invariant, because

(L∗
h
αL)g(u) = αL

hg
(d(Lh)g(u))

= α(d(L−1
hg
)hg(d(Lh)g(u)))

= α(d(L−1
hg

◦ Lh)g(u))

= α(d(L−1
g
)g(u)) = αL

g
(u).
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Second, we saw that for every one-form, ω ∈ A1(G),

ωg(u) = ω1(d(L
−1
g
)gu),

so ω1 ∈ g∗ is the unique element such that ω = ωL

1 , which shows that the map α �→ αL is an
isomorphism whose inverse is the map, ω �→ ω1.

Now, since every left-invariant vector field is of the form X = uL, for some unique, u ∈ g,
where uL is the vector field given by uL(a) = d(La)1u, and since

ωag(d(La)gu) = ωg(u),

for g = 1, we get ωa(d(La)1u) = ω1(u), that is

ω(X)a = ω1(u), a ∈ G,

which shows that ω(X) is a constant function on G. It follows that for every vector field, Y ,
(not necessarily left-invariant),

Y [ω(X)] = 0.

Recall that as a special case of Proposition 8.13, we have

dω(X, Y ) = X[ω(Y )]− Y [ω(X)]− ω([X, Y ]).

Consequently, for all left-invariant vector fields, X, Y , on G, for every left-invariant one-form,
ω, we have

dω(X, Y ) = −ω([X, Y ]).

If we identify the set of left-invariant vector fields on G with g and the set of left-invariant
one-forms on G with g∗, we have

dω(X, Y ) = −ω([X, Y ]), ω ∈ g∗, X, Y ∈ g.

We summarize these facts in the following proposition:

Proposition 8.24 Let G be any Lie group.

(1) The set of left-invariant one-forms on G is isomorphic to g∗, the dual of the Lie algebra,
g, of G, via the isomorphism, ω �→ ω1.

(2) For every left-invariant one form, ω, and every left-invariant vector field, X, the value
of the function ω(X) is constant and equal to ω1(X1).

(3) If we identify the set of left-invariant vector fields on G with g and the set of left-
invariant one-forms on G with g∗, then

dω(X, Y ) = −ω([X, Y ]), ω ∈ g∗, X, Y ∈ g.
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Pick any basis, X1, . . . , Xr, of the Lie algebra, g, and let ω1, . . . ,ωr be the dual basis of
g∗. Then, there are some constants, ck

ij
, such that

[Xi, Xj] =
r�

k=1

ck
ij
Xk.

The constants, ck
ij

are called the structure constants of the Lie algebra, g. Observe that
ck
ji
= −ck

ij
.

As ωi([Xp, Xq]) = ci
pq

and dωi(X, Y ) = −ωi([X, Y ]), we have

�

j,k

ci
jk
ωj ∧ ωk(Xp, Xq) =

�

j,k

ci
jk
(ωj(Xp)ωk(Xq)− ωj(Xq)ωk(Xp))

=
�

j,k

ci
jk
ωj(Xp)ωk(Xq)−

�

j,k

ci
jk
ωj(Xq)ωk(Xp)

=
�

j,k

ci
jk
ωj(Xp)ωk(Xq) +

�

j,k

ci
kj
ωj(Xq)ωk(Xp)

= ci
p,q

+ ci
p,q

= 2ci
p,q
,

so we get the equations

dωi = −1

2

�

j,k

ci
jk
ωj ∧ ωk,

known as the Maurer-Cartan equations .

These equations can be neatly described if we use differential forms valued in g. Let ωMC

be the one-form given by

(ωMC)g(u) = d(L−1
g
)gu, g ∈ G, u ∈ TgG.

The same computation that showed that αL is left-invariant if α ∈ g shows that ωMC is
left-invariant and, obviously, (ωMC)1 = id.

Definition 8.14 Given any Lie group, G, the Maurer-Cartan form on G is the g-valued
differential 1-form, ωMC ∈ A1(G, g), given by

(ωMC)g = d(L−1
g
)g, g ∈ G.

Recall that for every g ∈ G, conjugation by g is the map given by a �→ gag−1, that is,
a �→ (Lg ◦Rg−1)a, and the adjoint map, Ad(g) : g → g, associated with g is the derivative of
Lg ◦Rg−1 at 1, that is, we have

Ad(g)(u) = d(Lg ◦Rg−1)1(u), u ∈ g.

Furthermore, it is obvious that Lg and Rh commute.
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Proposition 8.25 Given any Lie group, G, for all g ∈ G, the Maurer-Cartan form, ωMC,
has the following properties:

(1) (ωMC)1 = idg.

(2) For all g ∈ G,
R∗

g
ωMC = Ad(g−1) ◦ ωMC.

(3) The 2-form, dω ∈ A2(G, g), satisfies the Maurer-Cartan equation,

dωMC = −1

2
[ωMC,ωMC].

Proof . Property (1) is obvious.

(2) For simplicity of notation, if we write ω = ωMC, then

(R∗
g
ω)h = ωhg ◦ d(Rg)h

= d(L−1
hg
)hg ◦ d(Rg)h

= d(L−1
hg

◦Rg)h

= d((Lh ◦ Lg)
−1 ◦Rg)h

= d(L−1
g

◦ L−1
h

◦Rg)h

= d(L−1
g

◦Rg ◦ L−1
h
)h

= d(Lg−1 ◦Rg)1 ◦ d(L−1
h
)h

= Ad(g−1) ◦ ωh,

as claimed.

(3) We can easily express ωMC in terms of a basis of g. if X1, . . . , Xr is a basis of g and
ω1, . . . ,ωr is the dual basis, then ωMC(Xi) = Xi, for i = 1, . . . , r, so ωMC is given by

ωMC = ω1X1 + · · ·+ ωrXr,

under the usual identification of left-invariant vector fields (resp. left-invariant one forms)
with elements of g (resp. elements of g∗) and, for simplicity of notation, with the sign ·
omitted between ωi and Xi. Using this expression for ωMC, a simple computation shows that
the Maurer-Cartan equation is equivalent to

dωMC = −1

2
[ωMC,ωMC],

as claimed.

In the case of a matrix group, G ⊆ GL(n,R), it is easy to see that the Maurer-Cartan
form is given explicitly by

ωMC = g−1dg, g ∈ G.
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Thus, it is a kind of logarithmic derivative of the identity. For n = 2, if we let

g =

�
α β
γ δ

�
,

we get

ωMC =
1

αδ − βγ

�
δdα− βdγ δdβ − βdδ
−γdα + αdγ −γdβ + αdδ

�
.

Remarks:

(1) The quantity, dωMC + 1
2 [ωMC,ωMC] is the curvature of the connection ωMC on G. The

Maurer-Cartan equation says that the curvature of the Maurer-Cartan connection is
zero. We also say that ωMC is a flat connection.

(2) As dωMC = −1
2 [ωMC,ωMC], we get

d[ωMC,ωMC] = 0,

which yields

[[ωMC,ωMC],ωMC] = 0.

It is easy to show that the above expresses the Jacobi identity in g.

(3) As in the case of real-valued one-forms, for every left-invariant one-form, ω ∈ A1(G, g),
we have

ωg(u) = ω1(d(L
−1
g
)gu) = ω1((ωMC)gu),

for all g ∈ G and all u ∈ TgG and where ω1 : g → g is a linear map. Consequently, there
is a bijection between the set of left-invariant one-forms in A1(G, g) and Hom(g, g).

(4) The Maurer-Cartan form can be used to define the Darboux derivative of a map,
f : M → G, where M is a manifold and G is a Lie group. The Darboux derivative of
f is the g-valued one-form, ωf ∈ A1(M, g), on M given by

ωf = f ∗ωMC.

Then, it can be shown that when M is connected, if f1 and f2 have the same Darboux
derivative, ωf1 = ωf2 , then f2 = Lg ◦f1, for some g ∈ G. Elie Cartan also characterized
which g-valued one-forms on M are Darboux derivatives (dω+ 1

2 [ω,ω] = 0 must hold).
For more on Darboux derivatives, see Sharpe [139] (Chapter 3) and Malliavin [101]
(Chapter III).
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8.6 Volume Forms on Riemannian Manifolds and Lie
Groups

Recall from Section 7.4 that a smooth manifold, M , is a Riemannian manifold iff the vector
bundle, TM , has a Euclidean metric. This means that there is a family, (�−,−�p)p∈M , of
inner products on each tangent space, TpM , such that �−,−�p depends smoothly on p, which
can be expessed by saying that that the maps

x �→ �dϕ−1
x
(ei), dϕ

−1
x
(ej)�ϕ−1(x), x ∈ ϕ(U), 1 ≤ i, j ≤ n

are smooth, for every chart, (U,ϕ), of M , where (e1, . . . , en) is the canonical basis of Rn. We
let

gij(x) = �dϕ−1
x
(ei), dϕ

−1
x
(ej)�ϕ−1(x)

and we say that the n× n matrix, (gij(x)), is the local expression of the Riemannian metric
on M at x in the coordinate patch, (U,ϕ).

For orientability of manifolds, volume forms and related notions, please refer back to
Section 3.8. If a Riemannian manifold, M , is orientable, then there is a volume form on M
with some special properties.

Proposition 8.26 Let M be a Riemannian manifold with dim(M) = n. If M is orientable,
then there is a uniquely determined volume form, VolM , on M with the following properties:

(1) For every p ∈ M , for every positively oriented orthonormal basis (b1, . . . , bn) of TpM ,
we have

VolM(b1, . . . , bn) = 1.

(2) In every orientation preserving local chart, (U,ϕ), we have

((ϕ−1)∗VolM)q =
�

det(gij(q)) dx1 ∧ · · · ∧ dxn, q ∈ ϕ(U).

Proof . (1) Say the orientation of M is given by ω ∈ An(M). For any two positively oriented
orthonormal bases, (b1, . . . , bn) and (b�1, . . . , b

�
n
), in TpM , by expressing the second basis over

the first, there is an orthogonal matrix, C = (cij), so that

b�
i
=

n�

j=1

cijbj.

We have
ωp(b

�
1, . . . , b

�
n
) = det(C)ωp(b1, . . . , bn),

and as these bases are positively oriented, we conclude that det(C) = 1 (as C is orthogonal,
det(C) = ±1). As a consequence, we have a well-defined function, ρ : M → R, with ρ(p) > 0
for all p ∈ M , such that

ρ(p) = ωp(b1, . . . , bn),
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for every positively oriented orthonormal basis, (b1, . . . , bn), of TpM . If we can show that ρ
is smooth, then VolM = ρ−1ω is the required volume form.

Let (U,ϕ) be a positively oriented chart and consider the vector fields, Xj, on ϕ(U) given
by

Xj(q) = dϕ−1
q
(ej), q ∈ ϕ(U), 1 ≤ j ≤ n.

Then, (X1(q), . . . , Xn(q)) is a positively oriented basis of Tϕ−1(q). If we apply Gram-Schmidt
orthogonalization we get an upper triangular matrix, A(q) = (aij(q)), of smooth functions
on ϕ(U) with aii(q) > 0 such that

bi(q) =
n�

j=1

aij(q)Xj(q), 1 ≤ i ≤ n,

and (b1(q), . . . , bn(q)) is a positively oriented orthonormal basis of Tϕ−1(q). We have

ρ(ϕ−1(q)) = ωϕ−1(q)(b1(q), . . . , bn(q))

= det(A(q))ωϕ−1(q)(X1(q), . . . , Xn(q))

= det(A(q))(ϕ−1)∗ωq(e1, . . . , en),

which shows that ρ is smooth.

(2) If we repeat the end of the proof with ω = VolM , then ρ ≡ 1 on M and the above
formula yield

((ϕ−1)∗VolM)q = (det(A(q)))−1dx1 ∧ · · · ∧ dxn.

If we compute �bi(q), bk(q)�ϕ−1(q), we get

δik = �bi(q), bk(q)�ϕ−1(q) =
n�

j=1

n�

l=1

aij(q)gjl(q)akl(q),

and so, I = A(q)G(q)A(q)�, where G(q) = (gjl(q)). Thus, (det(A(q)))2 det(G(q)) = 1 and
since det(A(q)) =

�
i
aii(q) > 0, we conclude that

(det(A(q)))−1 =
�

det(gij(q)),

which proves the formula in (2).

We saw in Section 3.8 that a volume form, ω0, on the sphere Sn ⊆ R
n+1 is given by

(ω0)p(u1, . . . un) = det(p, u1, . . . un),

where p ∈ Sn and u1, . . . un ∈ TpSn. To be more precise, we consider the n-form,
ω0 ∈ An(Rn+1) given by the above formula. As

(ω0)p(e1, . . . , �ei, . . . , en+1) = (−1)i−1pi,
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where p = (p1, . . . , pn+1), we have

(ω0)p =
n+1�

i=1

(−1)i−1pi dx1 ∧ · · · ∧ �dxi ∧ · · · ∧ dxn+1.

Let i : Sn → R
n+1 be the inclusion map. For every p ∈ Sn, and every basis, (u1, . . . , un),

of TpSn, the (n + 1)-tuple (p, u1, . . . , un) is a basis of R
n+1 and so, (ω0)p �= 0. Hence,

ω0 � Sn = i∗ω0 is a volume form on Sn. If we give Sn the Riemannian structure induced by
R

n+1, then the discussion above shows that

VolSn = ω0 � Sn.

Let r : Rn+1 − {0} → Sn be the map given by

r(x) =
x

�x�
and set

ω = r∗VolSn ,

a closed n-form on R
n+1 − {0}. Clearly,

ω � Sn = VolSn .

Furthermore

ωx(u1, . . . , un) = (ω0)r(x)(drx(u1), . . . , drx(un))

= �x�−1 det(x, drx(u1), . . . , drx(un)).

We leave it as an exercise to prove that ω is given by

ωx =
1

�x�n
n+1�

i=1

(−1)i−1xi dx1 ∧ · · · ∧ �dxi ∧ · · · ∧ dxn+1.

We know that there is a map, π : Sn → RP
n, such that π−1([p]) consist of two antipodal

points, for every [p] ∈ RP
n. It can be shown that there is a volume form on RP

n iff n is
even, in which case,

π∗(VolRPn) = VolSn .

Thus, RPn is orientable iff n is even.

Let G be a Lie group of dimension n. For any basis, (ω1, . . . ,ωn), of the Lie algebra, g,
of G, we have the left-invariant one-forms defined by the ωi, also denoted ωi, and obviously,
(ω1, . . . ,ωn) is a frame for TG. Therefore, ω = ω1 ∧ · · ·∧ ωn is an n-form on G that is never
zero, that is, a volume form. Since pull-back commutes with ∧, the n-form ω is left-invariant.
We summarize this as

Proposition 8.27 Every Lie group, G, possesses a left-invariant volume form. Therefore,
every Lie group is orientable.
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