
Chapter 3

Manifolds

3.1 Charts and Manifolds

In Chapter 1 we defined the notion of a manifold embedded in some ambient space, RN .
In order to maximize the range of applications of the theory of manifolds it is necessary to
generalize the concept of a manifold to spaces that are not a priori embedded in some R

N .
The basic idea is still that, whatever a manifold is, it is a topological space that can be
covered by a collection of open subsets, Uα, where each Uα is isomorphic to some “standard
model”, e.g., some open subset of Euclidean space, Rn. Of course, manifolds would be very
dull without functions defined on them and between them. This is a general fact learned from
experience: Geometry arises not just from spaces but from spaces and interesting classes of
functions between them. In particular, we still would like to “do calculus” on our manifold
and have good notions of curves, tangent vectors, differential forms, etc. The small drawback
with the more general approach is that the definition of a tangent vector is more abstract.
We can still define the notion of a curve on a manifold, but such a curve does not live in
any given R

n, so it it not possible to define tangent vectors in a simple-minded way using
derivatives. Instead, we have to resort to the notion of chart. This is not such a strange
idea. For example, a geography atlas gives a set of maps of various portions of the earth and
this provides a very good description of what the earth is, without actually imagining the
earth embedded in 3-space.

The material of this chapter borrows from many sources, including Warner [147], Berger
and Gostiaux [17], O’Neill [119], Do Carmo [50, 49], Gallot, Hulin and Lafontaine [60],
Lang [95], Schwartz [135], Hirsch [76], Sharpe [139], Guillemin and Pollack [69], Lafontaine
[92], Dubrovin, Fomenko and Novikov [52] and Boothby [18]. A nice (not very technical)
exposition is given in Morita [114] (Chapter 1). The recent book by Tu [145] is also highly
recommended for its clarity. Among the many texts on manifolds and differential geometry,
the book by Choquet-Bruhat, DeWitt-Morette and Dillard-Bleick [37] stands apart because
it is one of the clearest and most comprehensive (many proofs are omitted, but this can
be an advantage!) Being written for (theoretical) physicists, it contains more examples and
applications than most other sources.
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116 CHAPTER 3. MANIFOLDS

Given R
n, recall that the projection functions, pri : Rn → R, are defined by

pri(x1, . . . , xn) = xi, 1 ≤ i ≤ n.

For technical reasons (in particular, to ensure the existence of partitions of unity, see
Section 3.6) and to avoid “esoteric” manifolds that do not arise in practice, from now on, all
topological spaces under consideration will be assumed to be Hausdorff and second-countable
(which means that the topology has a countable basis).

Definition 3.1 Given a topological space, M , a chart (or local coordinate map) is a pair,
(U, ϕ), where U is an open subset of M and ϕ : U → Ω is a homeomorphism onto an open
subset, Ω = ϕ(U), of Rnϕ (for some nϕ ≥ 1). For any p ∈ M , a chart, (U, ϕ), is a chart at p iff
p ∈ U . If (U, ϕ) is a chart, then the functions xi = pri ◦ϕ are called local coordinates and for
every p ∈ U , the tuple (x1(p), . . . , xn(p)) is the set of coordinates of p w.r.t. the chart. The
inverse, (Ω, ϕ−1), of a chart is called a local parametrization. Given any two charts, (Ui, ϕi)
and (Uj, ϕj), if Ui ∩Uj �= ∅, we have the transition maps , ϕj

i
: ϕi(Ui ∩Uj) → ϕj(Ui ∩Uj) and

ϕi

j
: ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj), defined by

ϕj

i
= ϕj ◦ ϕ−1

i
and ϕi

j
= ϕi ◦ ϕ−1

j
.

Clearly, ϕi

j
= (ϕj

i
)−1. Observe that the transition maps ϕj

i
(resp. ϕi

j
) are maps between

open subsets of Rn. This is good news! Indeed, the whole arsenal of calculus is available
for functions on R

n, and we will be able to promote many of these results to manifolds by
imposing suitable conditions on transition functions.

Definition 3.2 Given a topological space, M , given some integer n ≥ 1 and given some k
such that k is either an integer k ≥ 1 or k = ∞, a Ck n-atlas (or n-atlas of class Ck), A, is
a family of charts, {(Ui, ϕi)}, such that

(1) ϕi(Ui) ⊆ R
n for all i;

(2) The Ui cover M , i.e.,

M =
�

i

Ui;

(3) Whenever Ui ∩Uj �= ∅, the transition map ϕj

i
(and ϕi

j
) is a Ck-diffeomorphism. When

k = ∞, the ϕj

i
are smooth diffeomorphisms.

We must ensure that we have enough charts in order to carry out our program of gener-
alizing calculus on R

n to manifolds. For this, we must be able to add new charts whenever
necessary, provided that they are consistent with the previous charts in an existing atlas.
Technically, given a Ck n-atlas, A, on M , for any other chart, (U, ϕ), we say that (U, ϕ) is
compatible with the altas A iff every map ϕi ◦ϕ−1 and ϕ ◦ϕ−1

i
is Ck (whenever U ∩Ui �= ∅).
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Two atlases A and A� on M are compatible iff every chart of one is compatible with the
other atlas. This is equivalent to saying that the union of the two atlases is still an atlas.
It is immediately verified that compatibility induces an equivalence relation on Ck n-atlases
on M . In fact, given an atlas, A, for M , the collection, �A, of all charts compatible with A is
a maximal atlas in the equivalence class of charts compatible with A. Finally, we have our
generalized notion of a manifold.

Definition 3.3 Given some integer n ≥ 1 and given some k such that k is either an integer
k ≥ 1 or k = ∞, a Ck-manifold of dimension n consists of a topological space, M , together
with an equivalence class, A, of Ck n-atlases, on M . Any atlas, A, in the equivalence class
A is called a differentiable structure of class Ck (and dimension n) on M . We say that M
is modeled on R

n. When k = ∞, we say that M is a smooth manifold .

Remark: It might have been better to use the terminology abstract manifold rather than
manifold, to emphasize the fact that the space M is not a priori a subspace of RN , for some
suitable N .

We can allow k = 0 in the above definitions. In this case, condition (3) in Definition 3.2
is void, since a C0-diffeomorphism is just a homeomorphism, but ϕj

i
is always a homeomor-

phism. In this case, M is called a topological manifold of dimension n. We do not require a
manifold to be connected but we require all the components to have the same dimension, n.
Actually, on every connected component of M , it can be shown that the dimension, nϕ, of
the range of every chart is the same. This is quite easy to show if k ≥ 1 but for k = 0, this
requires a deep theorem of Brouwer. (Brouwer’s Invariance of Domain Theorem states that
if U ⊆ R

n is an open set and if f : U → R
n is a continuous and injective map, then f(U)

is open in R
n. Using Brouwer’s Theorem, we can show the following fact: If U ⊆ R

m and
V ⊆ R

n are two open subsets and if f : U → V is a homeomorphism between U and V , then
m = n. If m > n, then consider the injection, i : Rn → R

m, where i(x) = (x, 0m−n). Clearly,
i is injective and continuous, so f ◦ i : U → i(V ) is injective and continuous and Brouwer’s
Theorem implies that i(V ) is open in R

m, which is a contradiction, as i(V ) = V × {0m−n}
is not open in R

m. If m < n, consider the homeomorphism f−1 : V → U .)

What happens if n = 0? In this case, every one-point subset of M is open, so every
subset of M is open, i.e., M is any (countable if we assume M to be second-countable) set
with the discrete topology!

Observe that since R
n is locally compact and locally connected, so is every manifold

(check this!).

In order to get a better grasp of the notion of manifold it is useful to consider examples
of non-manifolds. First, consider the curve in R

2 given by the zero locus of the equation

y2 = x2 − x3,
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Figure 3.1: A nodal cubic; not a manifold

namely, the set of points

M1 = {(x, y) ∈ R
2 | y2 = x2 − x3}.

This curve showed in Figure 3.1 and called a nodal cubic is also defined as the parametric
curve

x = 1− t2

y = t(1− t2).

We claim that M1 is not even a topological manifold. The problem is that the nodal cubic
has a self-intersection at the origin. If M1 was a topological manifold, then there would be
a connected open subset, U ⊆ M1, containing the origin, O = (0, 0), namely the intersection
of a small enough open disc centered at O with M1, and a local chart, ϕ : U → Ω, where Ω
is some connected open subset of R (that is, an open interval), since ϕ is a homeomorphism.
However, U−{O} consists of four disconnected components and Ω−ϕ(O) of two disconnected
components, contradicting the fact that ϕ is a homeomorphism.

Let us now consider the curve in R
2 given by the zero locus of the equation

y2 = x3,

namely, the set of points
M2 = {(x, y) ∈ R

2 | y2 = x3}.
This curve showed in Figure 3.2 and called a cuspidal cubic is also defined as the para-

metric curve

x = t2

y = t3.

Consider the map, ϕ : M2 → R, given by

ϕ(x, y) = y1/3.
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Figure 3.2: A Cuspidal Cubic

Since x = y2/3 on M2, we see that ϕ−1 is given by

ϕ−1(t) = (t2, t3)

and clearly, ϕ is a homeomorphism, so M2 is a topological manifold. However, in the altas
consisting of the single chart, {ϕ : M2 → R}, the spaceM2 is also a smooth manifold! Indeed,
as there is a single chart, condition (3) of Definition 3.2 holds vacuously.

This fact is somewhat unexpected because the cuspidal cubic is usually not considered
smooth at the origin, since the tangent vector of the parametric curve, c : t �→ (t2, t3), at the
origin is the zero vector (the velocity vector at t, is c�(t) = (2t, 3t2)). However, this apparent
paradox has to do with the fact that, as a parametric curve, M2 is not immersed in R

2 since
c� is not injective (see Definition 3.20 (a)), whereas as an abstract manifold, with this single
chart, M2 is diffeomorphic to R.

Now, we also have the chart, ψ : M2 → R, given by

ψ(x, y) = y,

with ψ−1 given by
ψ−1(u) = (u2/3, u).

Then, observe that
ϕ ◦ ψ−1(u) = u1/3,

a map that is not differentiable at u = 0. Therefore, the atlas {ϕ : M2 → R, ψ : M2 → R} is
not C1 and thus, with respect to that atlas, M2 is not a C1-manifold.

The example of the cuspidal cubic shows a peculiarity of the definition of a Ck (or C∞)
manifold: If a space, M , happens to be a topological manifold because it has an atlas
consisting of a single chart, then it is automatically a smooth manifold! In particular, if
f : U → R

m is any continuous function from some open subset, U , of Rn, to R
m, then the

graph, Γ(f) ⊆ R
n+m, of f given by

Γ(f) = {(x, f(x)) ∈ R
n+m | x ∈ U}
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is a smooth manifold with respect to the atlas consisting of the single chart, ϕ : Γ(f) → U ,
given by

ϕ(x, f(x)) = x,

with its inverse, ϕ−1 : U → Γ(f), given by

ϕ−1(x) = (x, f(x)).

The notion of a submanifold using the concept of “adapted chart” (see Definition 3.19 in
Section 3.4) gives a more satisfactory treatment of Ck (or smooth) submanifolds of R

n.
The example of the cuspidal cubic also shows clearly that whether a topological space is a
Ck-manifold or a smooth manifold depends on the choice of atlas.

In some cases, M does not come with a topology in an obvious (or natural) way and a
slight variation of Definition 3.2 is more convenient in such a situation:

Definition 3.4 Given a set, M , given some integer n ≥ 1 and given some k such that k is
either an integer k ≥ 1 or k = ∞, a Ck n-atlas (or n-atlas of class Ck), A, is a family of
charts, {(Ui, ϕi)}, such that

(1) Each Ui is a subset of M and ϕi : Ui → ϕi(Ui) is a bijection onto an open subset,
ϕi(Ui) ⊆ R

n, for all i;

(2) The Ui cover M , i.e.,

M =
�

i

Ui;

(3) Whenever Ui ∩ Uj �= ∅, the sets ϕi(Ui ∩ Uj) and ϕj(Ui ∩ Uj) are open in R
n and the

transition maps ϕj

i
and ϕi

j
are Ck-diffeomorphisms.

Then, the notion of a chart being compatible with an atlas and of two atlases being
compatible is just as before and we get a new definition of a manifold, analogous to Definition
3.3. But, this time, we give M the topology in which the open sets are arbitrary unions of
domains of charts, Ui, more precisely, the Ui’s of the maximal atlas defining the differentiable
structure on M . It is not difficult to verify that the axioms of a topology are verified and
M is indeed a topological space with this topology. It can also be shown that when M is
equipped with the above topology, then the maps ϕi : Ui → ϕi(Ui) are homeomorphisms,
so M is a manifold according to Definition 3.3. We also require that under this topology,
M is Hausdorff and second-countable. A sufficient condition (in fact, also necessary!) for
being second-countable is that some atlas be countable. A sufficient condition of M to be
Hausdorff is that for all p, q ∈ M with p �= q, either p, q ∈ Ui for some Ui or p ∈ Ui and
q ∈ Uj for some disjoint Ui, Uj. Thus, we are back to the original notion of a manifold where
it is assumed that M is already a topological space.

One can also define the topology on M in terms of any of the atlases, A, defining M (not
only the maximal one) by requiring U ⊆ M to be open iff ϕi(U ∩Ui) is open in R

n, for every
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chart, (Ui, ϕi), in the altas A. Then, one can prove that we obtain the same topology as the
topology induced by the maximal atlas. For details, see Berger and Gostiaux [17], Chapter
2.

If the underlying topological space of a manifold is compact, then M has some finite
atlas. Also, if A is some atlas for M and (U, ϕ) is a chart in A, for any (nonempty) open
subset, V ⊆ U , we get a chart, (V, ϕ � V ), and it is obvious that this chart is compatible
with A. Thus, (V, ϕ � V ) is also a chart for M . This observation shows that if U is any open
subset of a Ck-manifold, M , then U is also a Ck-manifold whose charts are the restrictions
of charts on M to U .

Example 1. The sphere Sn.

Using the stereographic projections (from the north pole and the south pole), we can
define two charts on Sn and show that Sn is a smooth manifold. Let σN : Sn − {N} → R

n

and σS : Sn − {S} → R
n, where N = (0, · · · , 0, 1) ∈ R

n+1 (the north pole) and S =
(0, · · · , 0,−1) ∈ R

n+1 (the south pole) be the maps called respectively stereographic projec-
tion from the north pole and stereographic projection from the south pole given by

σN(x1, . . . , xn+1) =
1

1− xn+1
(x1, . . . , xn) and σS(x1, . . . , xn+1) =

1

1 + xn+1
(x1, . . . , xn).

The inverse stereographic projections are given by

σ−1
N
(x1, . . . , xn) =

1��
n

i=1 x
2
i

�
+ 1

�
2x1, . . . , 2xn,

� n�

i=1

x2
i

�
− 1

�

and

σ−1
S
(x1, . . . , xn) =

1��
n

i=1 x
2
i

�
+ 1

�
2x1, . . . , 2xn,−

� n�

i=1

x2
i

�
+ 1

�
.

Thus, if we let UN = Sn − {N} and US = Sn − {S}, we see that UN and US are two open
subsets covering Sn, both homeomorphic to R

n. Furthermore, it is easily checked that on
the overlap, UN ∩ US = Sn − {N,S}, the transition maps

σS ◦ σ−1
N

= σN ◦ σ−1
S

are given by

(x1, . . . , xn) �→
1�

n

i=1 x
2
i

(x1, . . . , xn),

that is, the inversion of center O = (0, . . . , 0) and power 1. Clearly, this map is smooth on
R

n − {O}, so we conclude that (UN , σN) and (US, σS) form a smooth atlas for Sn.

Example 2. The projective space RP
n.

To define an atlas on RP
n it is convenient to view RP

n as the set of equivalence classes
of vectors in R

n+1 − {0} modulo the equivalence relation,

u ∼ v iff v = λu, for some λ �= 0 ∈ R.
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Given any p = [x1, . . . , xn+1] ∈ RP
n, we call (x1, . . . , xn+1) the homogeneous coordinates

of p. It is customary to write (x1 : · · · : xn+1) instead of [x1, . . . , xn+1]. (Actually, in most
books, the indexing starts with 0, i.e., homogeneous coordinates for RP

n are written as
(x0 : · · · : xn).) For any i, with 1 ≤ i ≤ n+ 1, let

Ui = {(x1 : · · · : xn+1) ∈ RP
n | xi �= 0}.

Observe that Ui is well defined, because if (y1 : · · · : yn+1) = (x1 : · · · : xn+1), then there is
some λ �= 0 so that yj = λxj, for j = 1, . . . , n + 1. We can define a homeomorphism, ϕi, of
Ui onto R

n, as follows:

ϕi(x1 : · · · : xn+1) =

�
x1

xi

, . . . ,
xi−1

xi

,
xi+1

xi

, . . . ,
xn+1

xi

�
,

where the ith component is omitted. Again, it is clear that this map is well defined since it
only involves ratios. We can also define the maps, ψi, from R

n to Ui ⊆ RP
n, given by

ψi(x1, . . . , xn) = (x1 : · · · : xi−1 : 1 : xi : · · · : xn),

where the 1 goes in the ith slot, for i = 1, . . . , n + 1. One easily checks that ϕi and ψi are
mutual inverses, so the ϕi are homeomorphisms. On the overlap, Ui ∩ Uj, (where i �= j), as
xj �= 0, we have

(ϕj ◦ ϕ−1
i
)(x1, . . . , xn) =

�
x1

xj

, . . . ,
xi−1

xj

,
1

xj

,
xi

xj

, . . . ,
xj−1

xj

,
xj+1

xj

, . . . ,
xn

xj

�
.

(We assumed that i < j; the case j < i is similar.) This is clearly a smooth function from
ϕi(Ui ∩ Uj) to ϕj(Ui ∩ Uj). As the Ui cover RP

n, we conclude that the (Ui, ϕi) are n + 1
charts making a smooth atlas for RPn. Intuitively, the space RPn is obtained by glueing the
open subsets Ui on their overlaps. Even for n = 3, this is not easy to visualize!

Example 3. The Grassmannian G(k, n).

Recall that G(k, n) is the set of all k-dimensional linear subspaces of Rn, also called k-
planes. Every k-plane, W , is the linear span of k linearly independent vectors, u1, . . . , uk, in
R

n; furthermore, u1, . . . , uk and v1, . . . , vk both span W iff there is an invertible k×k-matrix,
Λ = (λij), such that

vj =
k�

i=1

λijui, 1 ≤ j ≤ k.

Obviously, there is a bijection between the collection of k linearly independent vectors,
u1, . . . , uk, in R

n and the collection of n × k matrices of rank k. Furthermore, two n × k
matrices A and B of rank k represent the same k-plane iff

B = AΛ, for some invertible k × k matrix, Λ.
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(Note the analogy with projective spaces where two vectors u, v represent the same point
iff v = λu for some invertible λ ∈ R.) We can define the domain of charts (according to
Definition 3.4) on G(k, n) as follows: For every subset, S = {i1, . . . , ik} of {1, . . . , n}, let US

be the subset of n × k matrices, A, of rank k whose rows of index in S = {i1, . . . , ik} form
an invertible k× k matrix denoted AS. Observe that the k× k matrix consisting of the rows
of the matrix AA−1

S
whose index belong to S is the identity matrix, Ik. Therefore, we can

define a map, ϕS : US → R
(n−k)×k, where ϕS(A) is equal to the (n− k)× k matrix obtained

by deleting the rows of index in S from AA−1
S
.

We need to check that this map is well defined, i.e., that it does not depend on the matrix,
A, representing W . Let us do this in the case where S = {1, . . . , k}, which is notationally
simpler. The general case can be reduced to this one using a suitable permutation.

If B = AΛ, with Λ invertible, if we write

A =

�
A1

A2

�
and B =

�
B1

B2

�
,

as B = AΛ, we get B1 = A1Λ and B2 = A2Λ, from which we deduce that

�
B1

B2

�
B−1

1 =

�
Ik

B2B
−1
1

�
=

�
Ik

A2ΛΛ−1A−1
1

�
=

�
Ik

A2A
−1
1

�
=

�
A1

A2

�
A−1

1 .

Therefore, our map is indeed well-defined. It is clearly injective and we can define its
inverse, ψS, as follows: Let πS be the permutation of {1, . . . , n} swaping {1, . . . , k} and S
and leaving every other element fixed (i.e., if S = {i1, . . . , ik}, then πS(j) = ij and πS(ij) = j,
for j = 1, . . . , k). If PS is the permutation matrix associated with πS, for any (n − k) × k
matrix, M , let

ψS(M) = PS

�
Ik
M

�
.

The effect of ψS is to “insert into M” the rows of the identity matrix Ik as the rows of index
from S. At this stage, we have charts that are bijections from subsets, US, of G(k, n) to
open subsets, namely, R(n−k)×k. Then, the reader can check that the transition map ϕT ◦ϕ−1

S

from ϕS(US ∩ UU) to ϕT (US ∩ UU) is given by

M �→ (C +DM)(A+BM)−1,

where �
A B
C D

�
= PTPS,

is the matrix of the permutation πT ◦ πS (this permutation “shuffles” S and T ). This map
is smooth, as it is given by determinants, and so, the charts (US, ϕS) form a smooth atlas
for G(k, n). Finally, one can check that the conditions of Definition 3.4 are satisfied, so the
atlas just defined makes G(k, n) into a topological space and a smooth manifold.
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Remark: The reader should have no difficulty proving that the collection of k-planes rep-
resented by matrices in US is precisely the set of k-planes, W , supplementary to the (n−k)-
plane spanned by the canonical basis vectors ejk+1

, . . . , ejn (i.e., span(W ∪{ejk+1
, . . . , ejn}) =

R
n, where S = {i1, . . . , ik} and {jk+1, . . . , jn} = {1, . . . , n} − S).

Example 4. Product Manifolds.

LetM1 andM2 be two Ck-manifolds of dimension n1 and n2, respectively. The topological
space, M1 ×M2, with the product topology (the opens of M1 ×M2 are arbitrary unions of
sets of the form U × V , where U is open in M1 and V is open in M2) can be given the
structure of a Ck-manifold of dimension n1 + n2 by defining charts as follows: For any two
charts, (Ui, ϕi) on M1 and (Vj, ψj) on M2, we declare that (Ui × Vj, ϕi × ψj) is a chart on
M1 ×M2, where ϕi × ψj : Ui × Vj → R

n1+n2 is defined so that

ϕi × ψj(p, q) = (ϕi(p), ψj(q)), for all (p, q) ∈ Ui × Vj.

We define Ck-maps between manifolds as follows:

Definition 3.5 Given any two Ck-manifolds, M and N , of dimension m and n respectively,
a Ck-map is a continuous function, h : M → N , satisfying the following property: For every
p ∈ M , there is some chart, (U, ϕ), at p and some chart, (V, ψ), at q = h(p), with f(U) ⊆ V
and

ψ ◦ h ◦ ϕ−1 : ϕ(U) −→ ψ(V )

a Ck-function.

It is easily shown that Definition 3.5 does not depend on the choice of charts. In par-
ticular, if N = R, we obtain a Ck-function on M . One checks immediately that a function,
f : M → R, is a Ck-map iff for every p ∈ M , there is some chart, (U, ϕ), at p so that

f ◦ ϕ−1 : ϕ(U) −→ R

is a Ck-function. If U is an open subset of M , the set of Ck-functions on U is denoted by
Ck(U). In particular, Ck(M) denotes the set of Ck-functions on the manifold, M . Observe
that Ck(U) is a ring.

On the other hand, if M is an open interval of R, say M =]a, b[ , then γ : ]a, b[→ N is
called a Ck-curve in N . One checks immediately that a function, γ : ]a, b[→ N , is a Ck-map
iff for every q ∈ N , there is some chart, (V, ψ), at q so that

ψ ◦ γ : ]a, b[−→ ψ(V )

is a Ck-function.

It is clear that the composition of Ck-maps is a Ck-map. A Ck-map, h : M → N ,
between two manifolds is a Ck-diffeomorphism iff h has an inverse, h−1 : N → M (i.e.,
h−1 ◦ h = idM and h ◦ h−1 = idN), and both h and h−1 are Ck-maps (in particular, h and
h−1 are homeomorphisms). Next, we define tangent vectors.
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3.2 Tangent Vectors, Tangent Spaces,
Cotangent Spaces

Let M be a Ck manifold of dimension n, with k ≥ 1. The most intuitive method to define
tangent vectors is to use curves. Let p ∈ M be any point on M and let γ : ]− �, �[→ M be a
C1-curve passing through p, that is, with γ(0) = p. Unfortunately, if M is not embedded in
any R

N , the derivative γ�(0) does not make sense. However, for any chart, (U, ϕ), at p, the
map ϕ ◦ γ is a C1-curve in R

n and the tangent vector v = (ϕ ◦ γ)�(0) is well defined. The
trouble is that different curves may yield the same v!

To remedy this problem, we define an equivalence relation on curves through p as follows:

Definition 3.6 Given a Ck manifold, M , of dimension n, for any p ∈ M , two C1-curves,
γ1 : ]− �1, �1[→ M and γ2 : ]− �2, �2[→ M , through p (i.e., γ1(0) = γ2(0) = p) are equivalent
iff there is some chart, (U, ϕ), at p so that

(ϕ ◦ γ1)�(0) = (ϕ ◦ γ2)�(0).

Now, the problem is that this definition seems to depend on the choice of the chart.
Fortunately, this is not the case. For, if (V, ψ) is another chart at p, as p belongs both to U
and V , we have U ∩ V �= 0, so the transition function η = ψ ◦ ϕ−1 is Ck and, by the chain
rule, we have

(ψ ◦ γ1)�(0) = (η ◦ ϕ ◦ γ1)�(0)
= η�(ϕ(p))((ϕ ◦ γ1)�(0))
= η�(ϕ(p))((ϕ ◦ γ2)�(0))
= (η ◦ ϕ ◦ γ2)�(0)
= (ψ ◦ γ2)�(0).

This leads us to the first definition of a tangent vector.

Definition 3.7 (Tangent Vectors, Version 1) Given any Ck-manifold, M , of dimension n,
with k ≥ 1, for any p ∈ M , a tangent vector to M at p is any equivalence class of C1-curves
through p on M , modulo the equivalence relation defined in Definition 3.6. The set of all
tangent vectors at p is denoted by Tp(M) (or TpM).

It is obvious that Tp(M) is a vector space. If u, v ∈ Tp(M) are defined by the curves γ1
and γ2, then u+ v is defined by the curve γ1+γ2 (we may assume by reparametrization that
γ1 and γ2 have the same domain.) Similarly, if u ∈ Tp(M) is defined by a curve γ and λ ∈ R,
then λu is defined by the curve λγ. The reader should check that these definitions do not
depend on the choice of the curve in its equivalence class. We will show that Tp(M) is a vector
space of dimension n = dimension of M . One should observe that unless M = R

n, in which
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case, for any p, q ∈ R
n, the tangent space Tq(M) is naturally isomorphic to the tangent space

Tp(M) by the translation q − p, for an arbitrary manifold, there is no relationship between
Tp(M) and Tq(M) when p �= q.

One of the defects of the above definition of a tangent vector is that it has no clear
relation to the Ck-differential structure of M . In particular, the definition does not seem to
have anything to do with the functions defined locally at p. There is another way to define
tangent vectors that reveals this connection more clearly. Moreover, such a definition is more
intrinsic, i.e., does not refer explicitly to charts. Our presentation of this second approach
is heavily inspired by Schwartz [135] (Chapter 3, Section 9) but also by Warner [147].

As a first step, consider the following: Let (U, ϕ) be a chart at p ∈ M (where M is
a Ck-manifold of dimension n, with k ≥ 1) and let xi = pri ◦ ϕ, the ith local coordinate
(1 ≤ i ≤ n). For any function, f , defined on U � p, set

�
∂

∂xi

�

p

f =
∂(f ◦ ϕ−1)

∂Xi

����
ϕ(p)

, 1 ≤ i ≤ n.

(Here, (∂g/∂Xi)|y denotes the partial derivative of a function g : Rn → R with respect to
the ith coordinate, evaluated at y.)

We would expect that the function that maps f to the above value is a linear map on
the set of functions defined locally at p, but there is technical difficulty: The set of functions
defined locally at p is not a vector space! To see this, observe that if f is defined on an open
U � p and g is defined on a different open V � p, then we do not know how to define f + g.
The problem is that we need to identify functions that agree on a smaller open. This leads
to the notion of germs .

Definition 3.8 Given any Ck-manifold, M , of dimension n, with k ≥ 1, for any p ∈ M , a
locally defined function at p is a pair, (U, f), where U is an open subset of M containing p
and f is a function defined on U . Two locally defined functions, (U, f) and (V, g), at p are
equivalent iff there is some open subset, W ⊆ U ∩ V , containing p so that

f � W = g � W.

The equivalence class of a locally defined function at p, denoted [f ] or f , is called a germ at
p.

One should check that the relation of Definition 3.8 is indeed an equivalence relation. Of
course, the value at p of all the functions, f , in any germ, f , is f(p). Thus, we set f(p) = f(p).
One should also check that we can define addition of germs, multiplication of a germ by a
scalar and multiplication of germs, in the obvious way: If f and g are two germs at p, and
λ ∈ R, then

[f ] + [g] = [f + g]

λ[f ] = [λf ]

[f ][g] = [fg].
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However, we have to check that these definitions make sense, that is, that they don’t depend
on the choice of representatives chosen in the equivalence classes [f ] and [g]. Let us give
the details of this verification for the sum of two germs, [f ] and [g]. For any two locally
defined functions, (f, U) and (g, V ), at p, let f + g be the locally defined function at p
with domain U ∩ V and such that (f + g)(x) = f(x) + g(x) for all x ∈ U ∩ V . We need
to check that for any locally defined functions (U1, f1), (U2, f2), (V1, g1), and (V2, g2), at
p, if (U1, f1) and (U2, f2) are equivalent and if (V1, g1) and (V2, g2) are equivalent, then
(U1 ∩ V1, f1 + g1) and (U2 ∩ V2, f2 + g2) are equivalent. However, as (U1, f1) and (U2, f2)
are equivalent, there is some W1 ⊆ U1 ∩ U2 so that f1 � W1 = f2 � W1 and as (V1, g1) and
(V2, g2) are equivalent, there is some W2 ⊆ V1 ∩V2 so that g1 � W2 = g2 � W2. Then, observe
that (f1 + g1) � (W1 ∩W2) = (f2 + g2) � (W1 ∩W2), which means that [f1 + g1] = [f2 + g2].
Therefore, [f + g] does not depend on the representatives chosen in the equivalence classes
[f ] and [g] and it makes sense to set

[f ] + [g] = [f + g].

We can proceed in a similar fashion to define λ[f ] and [f ][g]. Therefore, the germs at p form

a ring. The ring of germs of Ck-functions at p is denoted O(k)
M,p

. When k = ∞, we usually
drop the superscript ∞.

Remark: Most readers will most likely be puzzled by the notation O(k)
M,p

. In fact, it is
standard in algebraic geometry, but it is not as commonly used in differential geometry. For
any open subset, U , of a manifold, M , the ring, Ck(U), of Ck-functions on U is also denoted

O(k)
M

(U) (certainly by people with an algebraic geometry bent!). Then, it turns out that the

map U �→ O(k)
M

(U) is a sheaf , denoted O(k)
M

, and the ring O(k)
M,p

is the stalk of the sheaf O(k)
M

at p. Such rings are called local rings . Roughly speaking, all the “local” information about
M at p is contained in the local ring O(k)

M,p
. (This is to be taken with a grain of salt. In the

Ck-case where k < ∞, we also need the “stationary germs”, as we will see shortly.)

Now that we have a rigorous way of dealing with functions locally defined at p, observe
that the map

vi : f �→
�

∂

∂xi

�

p

f

yields the same value for all functions f in a germ f at p. Furthermore, the above map is
linear on O(k)

M,p
. More is true. Firstly for any two functions f, g locally defined at p, we have

�
∂

∂xi

�

p

(fg) = f(p)

�
∂

∂xi

�

p

g + g(p)

�
∂

∂xi

�

p

f.

Secondly, if (f ◦ ϕ−1)�(ϕ(p)) = 0, then

�
∂

∂xi

�

p

f = 0.
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The first property says that vi is a derivation. As to the second property, when
(f ◦ ϕ−1)�(ϕ(p)) = 0, we say that f is stationary at p. It is easy to check (using the chain
rule) that being stationary at p does not depend on the chart, (U, ϕ), at p or on the function
chosen in a germ, f . Therefore, the notion of a stationary germ makes sense: We say that f
is a stationary germ iff (f ◦ϕ−1)�(ϕ(p)) = 0 for some chart, (U, ϕ), at p and some function, f ,

in the germ, f . The Ck-stationary germs form a subring of O(k)
M,p

(but not an ideal!) denoted

S(k)
M,p

.

Remarkably, it turns out that the dual of the vector space, O(k)
M,p

/S(k)
M,p

, is isomorphic to

the tangent space, Tp(M). First, we prove that the subspace of linear forms on O(k)
M,p

that

vanish on S(k)
M,p

has
�

∂

∂x1

�

p

, . . . ,
�

∂

∂xn

�

p

as a basis.

Proposition 3.1 Given any Ck-manifold, M , of dimension n, with k ≥ 1, for any p ∈ M

and any chart (U, ϕ) at p, the n functions,
�

∂

∂x1

�

p

, . . . ,
�

∂

∂xn

�

p

, defined on O(k)
M,p

by

�
∂

∂xi

�

p

f =
∂(f ◦ ϕ−1)

∂Xi

����
ϕ(p)

, 1 ≤ i ≤ n

are linear forms that vanish on S(k)
M,p

. Every linear form, L, on O(k)
M,p

that vanishes on S(k)
M,p

can be expressed in a unique way as

L =
n�

i=1

λi

�
∂

∂xi

�

p

,

where λi ∈ R. Therefore, the

�
∂

∂xi

�

p

, i = 1, . . . , n

form a basis of the vector space of linear forms on O(k)
M,p

that vanish on S(k)
M,p

.

Proof . The first part of the proposition is trivial, by definition of (f ◦ ϕ−1)�(ϕ(p)) and of�
∂

∂xi

�

p

f .

Next, assume that L is a linear form on O(k)
M,p

that vanishes on S(k)
M,p

. Consider the locally
defined function at p given by

g(q) = f(q)−
n�

i=1

(pri ◦ ϕ)(q)
�

∂

∂xi

�

p

f.
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Observe that the germ of g is stationary at p, since

g(q) = (g ◦ ϕ−1)(ϕ(q)) = (f ◦ ϕ−1)(ϕ(q))−
n�

i=1

(pri ◦ ϕ)(q)
�

∂

∂xi

�

p

f

= (f ◦ ϕ−1)(X1(q) . . . , Xn(q))−
n�

i=1

Xi(q)

�
∂

∂xi

�

p

f,

with Xi(q) = (pri ◦ ϕ)(q). It follows that

∂(g ◦ ϕ−1)

∂Xi

����
ϕ(p)

=
∂(f ◦ ϕ−1)

∂Xi

����
ϕ(p)

−
�

∂

∂xi

�

p

f = 0.

But then, as L vanishes on stationary germs, we get

L(f) =
n�

i=1

L(pri ◦ ϕ)
�

∂

∂xi

�

p

f,

as desired. We still have to prove linear independence. If

n�

i=1

λi

�
∂

∂xi

�

p

= 0,

then, if we apply this relation to the functions xi = pri ◦ ϕ, as
�

∂

∂xi

�

p

xj = δij,

we get λi = 0, for i = 1, . . . , n.

As the subspace of linear forms on O(k)
M,p

that vanish on S(k)
M,p

is isomorphic to the dual,

(O(k)
M,p

/S(k)
M,p

)∗, of the space O(k)
M,p

/S(k)
M,p

, we see that the

�
∂

∂xi

�

p

, i = 1, . . . , n

also form a basis of (O(k)
M,p

/S(k)
M,p

)∗.

To define our second version of tangent vectors, we need to define linear derivations.

Definition 3.9 Given any Ck-manifold, M , of dimension n, with k ≥ 1, for any p ∈ M , a
linear derivation at p is a linear form, v, on O(k)

M,p
, such that

v(fg) = f(p)v(g) + g(p)v(f),

for all germs f ,g ∈ O(k)
M,p

. The above is called the Leibnitz property .
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Recall that we observed earlier that the
�

∂

∂xi

�

p

are linear derivations at p. Therefore, we

have

Proposition 3.2 Given any Ck-manifold, M , of dimension n, with k ≥ 1, for any p ∈ M ,
the linear forms on O(k)

M,p
that vanish on S(k)

M,p
are exactly the linear derivations on O(k)

M,p
that

vanish on S(k)
M,p

.

Proof . By Proposition 3.1, the
�

∂

∂xi

�

p

, i = 1, . . . , n

form a basis of the linear forms on O(k)
M,p

that vanish on S(k)
M,p

. Since each
�

∂

∂xi

�

p

is a also a

linear derivation at p, the result follows.

� Proposition 3.2 says that a linear form onO(k)
M,p

that vanishes on S(k)
M,p

is a linear derivation

but in general, when k �= ∞, a linear derivation on O(k)
M,p

does not necessarily vanish on

S(k)
M,p

. However, we will see in Proposition 3.6 that this is true for k = ∞.

Here is now our second definition of a tangent vector.

Definition 3.10 (Tangent Vectors, Version 2) Given any Ck-manifold, M , of dimension n,

with k ≥ 1, for any p ∈ M , a tangent vector to M at p is any linear derivation on O(k)
M,p

that

vanishes on S(k)
M,p

, the subspace of stationary germs.

Let us consider the simple case where M = R. In this case, for every x ∈ R, the tangent
space, Tx(R), is a one-dimensional vector space isomorphic to R and

�
∂

∂t

�
x
= d

dt

��
x
is a basis

vector of Tx(R). For every Ck-function, f , locally defined at x, we have
�

∂

∂t

�

x

f =
df

dt

����
x

= f �(x).

Thus,
�

∂

∂t

�
x
is: compute the derivative of a function at x.

We now prove the equivalence of the two definitions of a tangent vector.

Proposition 3.3 Let M be any Ck-manifold of dimension n, with k ≥ 1. For any p ∈
M , let u be any tangent vector (version 1) given by some equivalence class of C1-curves,

γ : ]− �,+�[→ M , through p (i.e., p = γ(0)). Then, the map Lu defined on O(k)
M,p

by

Lu(f) = (f ◦ γ)�(0)

is a linear derivation that vanishes on S(k)
M,p

. Furthermore, the map u �→ Lu defined above is

an isomorphism between Tp(M) and (O(k)
M,p

/S(k)
M,p

)∗, the space of linear forms on O(k)
M,p

that

vanish on S(k)
M,p

.
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Proof . Clearly, Lu(f) does not depend on the representative, f , chosen in the germ, f . If γ
and σ are equivalent curves defining u, then (ϕ ◦ σ)�(0) = (ϕ ◦ γ)�(0), so we get

(f ◦ σ)�(0) = (f ◦ ϕ−1)�(ϕ(p))((ϕ ◦ σ)�(0)) = (f ◦ ϕ−1)�(ϕ(p))((ϕ ◦ γ)�(0)) = (f ◦ γ)�(0),

which shows that Lu(f) does not depend on the curve, γ, defining u. If f is a stationary
germ, then pick any chart, (U, ϕ), at p and let ψ = ϕ ◦ γ. We have

Lu(f) = (f ◦ γ)�(0) = ((f ◦ ϕ−1) ◦ (ϕ ◦ γ))�(0) = (f ◦ ϕ−1)�(ϕ(p))(ψ�(0)) = 0,

since (f ◦ ϕ−1)�(ϕ(p)) = 0, as f is a stationary germ. The definition of Lu makes it clear
that Lu is a linear derivation at p. If u �= v are two distinct tangent vectors, then there exist
some curves γ and σ through p so that

(ϕ ◦ γ)�(0) �= (ϕ ◦ σ)�(0).

Thus, there is some i, with 1 ≤ i ≤ n, so that if we let f = pri ◦ ϕ, then

(f ◦ γ)�(0) �= (f ◦ σ)�(0),

and so, Lu �= Lv. This proves that the map u �→ Lu is injective.

For surjectivity, recall that every linear map, L, on O(k)
M,p

that vanishes on S(k)
M,p

can be
uniquely expressed as

L =
n�

i=1

λi

�
∂

∂xi

�

p

.

Define the curve, γ, on M through p by

γ(t) = ϕ−1(ϕ(p) + t(λ1, . . . , λn)),

for t in a small open interval containing 0. Then, we have

f(γ(t)) = (f ◦ ϕ−1)(ϕ(p) + t(λ1, . . . , λn)),

and we get

(f ◦ γ)�(0) = (f ◦ ϕ−1)�(ϕ(p))(λ1, . . . , λn) =
n�

i=1

λi

∂(f ◦ ϕ−1)

∂Xi

����
ϕ(p)

= L(f).

This proves that Tp(M) and (O(k)
M,p

/S(k)
M,p

)∗ are isomorphic.

In view of Proposition 3.3, we can identify Tp(M) with (O(k)
M,p

/S(k)
M,p

)∗. As the space

O(k)
M,p

/S(k)
M,p

is finite dimensional, (O(k)
M,p

/S(k)
M,p

)∗∗ is canonically isomorphic to O(k)
M,p

/S(k)
M,p

, so

we can identify T ∗
p
(M) with O(k)

M,p
/S(k)

M,p
. (Recall that if E is a finite dimensional space, the

map iE : E → E∗∗ defined so that, for any v ∈ E,

v �→ �v, where �v(f) = f(v), for all f ∈ E∗

is a linear isomorphism.) This also suggests the following definition:
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Definition 3.11 Given any Ck-manifold, M , of dimension n, with k ≥ 1, for any p ∈ M ,
the tangent space at p, denoted Tp(M) is the space of linear derivations on O(k)

M,p
that vanish

on S(k)
M,p

. Thus, Tp(M) can be identified with (O(k)
M,p

/S(k)
M,p

)∗. The space O(k)
M,p

/S(k)
M,p

is called
the cotangent space at p; it is isomorphic to the dual, T ∗

p
(M), of Tp(M). (For simplicity of

notation we also denote Tp(M) by TpM and T ∗
p
(M) by T ∗

p
M .)

Even though this is just a restatement of Proposition 3.1, we state the following propo-
sition because of its practical usefulness:

Proposition 3.4 Given any Ck-manifold, M , of dimension n, with k ≥ 1, for any p ∈ M
and any chart (U, ϕ) at p, the n tangent vectors,

�
∂

∂x1

�

p

, . . . ,

�
∂

∂xn

�

p

,

form a basis of TpM .

Observe that if xi = pri ◦ ϕ, as
�

∂

∂xi

�

p

xj = δi,j,

the images of x1, . . . , xn in O(k)
M,p

/S(k)
M,p

form the dual basis of the basis
�

∂

∂x1

�

p

, . . . ,
�

∂

∂xn

�

p

of

Tp(M). Given any Ck-function, f , on M , we denote the image of f in T ∗
p
(M) = O(k)

M,p
/S(k)

M,p

by dfp. This is the differential of f at p. Using the isomorphism between O(k)
M,p

/S(k)
M,p

and

(O(k)
M,p

/S(k)
M,p

)∗∗ described above, dfp corresponds to the linear map in T ∗
p
(M) defined by

dfp(v) = v(f), for all v ∈ Tp(M). With this notation, we see that (dx1)p, . . . , (dxn)p is a basis

of T ∗
p
(M), and this basis is dual to the basis

�
∂

∂x1

�

p

, . . . ,
�

∂

∂xn

�

p

of Tp(M). For simplicity of

notation, we often omit the subscript p unless confusion arises.

Remark: Strictly speaking, a tangent vector, v ∈ Tp(M), is defined on the space of germs,

O(k)
M,p

, at p. However, it is often convenient to define v on Ck-functions, f ∈ Ck(U), where U
is some open subset containing p. This is easy: Set

v(f) = v(f).

Given any chart, (U, ϕ), at p, since v can be written in a unique way as

v =
n�

i=1

λi

�
∂

∂xi

�

p

,
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we get

v(f) =
n�

i=1

λi

�
∂

∂xi

�

p

f.

This shows that v(f) is the directional derivative of f in the direction v. The directional
derivative, v(f), is also denoted v[f ].

When M is a smooth manifold, things get a little simpler. Indeed, it turns out that in
this case, every linear derivation vanishes on stationary germs. To prove this, we recall the
following result from calculus (see Warner [147]):

Proposition 3.5 If g : Rn → R is a Ck-function (k ≥ 2) on a convex open, U , about p ∈ R
n,

then for every q ∈ U , we have

g(q) = g(p) +
n�

i=1

∂g

∂Xi

����
p

(qi − pi) +
n�

i,j=1

(qi − pi)(qj − pj)

� 1

0

(1− t)
∂2g

∂Xi∂Xj

����
(1−t)p+tq

dt.

In particular, if g ∈ C∞(U), then the integral as a function of q is C∞.

Proposition 3.6 Let M be any C∞-manifold of dimension n. For any p ∈ M , any linear
derivation on O(∞)

M,p
vanishes on S(∞)

M,p
, the ring of stationary germs.

Proof . Pick some chart, (U, ϕ), at p, where U is convex (for instance, an open ball) and let
f be any stationary germ. If we apply Proposition 3.5 to f ◦ ϕ−1 and then compose with ϕ,
we get

f = f(p) +
n�

i=1

∂(f ◦ ϕ−1)

∂Xi

����
ϕ(p)

(xi − xi(p)) +
n�

i,j=1

(xi − xi(p))(xj − xj(p))h,

near p, where h is C∞. Since f is a stationary germ, this yields

f = f(p) +
n�

i,j=1

(xi − xi(p))(xj − xj(p))h.

If v is any linear derivation, we get

v(f) = v(f(p)) +
n�

i,j=1

�
(xi − xi(p))(p)(xj − xj(p))(p)v(h)

+ (xi − xi(p))(p)v(xj − xj(p))h(p) + v(xi − xi(p))(xj − xj(p))(p)h(p)
�
= 0.

Thus, v vanishes on stationary germs.

Proposition 3.6 shows that in the case of a smooth manifold, in Definition 3.10, we
can omit the requirement that linear derivations vanish on stationary germs, since this is
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automatic. It is also possible to define Tp(M) just in terms of O(∞)
M,p

. Let mM,p ⊆ O(∞)
M,p

be the
ideal of germs that vanish at p. Then, we also have the ideal m2

M,p
, which consists of all finite

sums of products of two elements in mM,p, and it can be shown that T ∗
p
(M) is isomorphic to

mM,p/m2
M,p

(see Warner [147], Lemma 1.16).

Actually, if we let m(k)
M,p

denote the Ck germs that vanish at p and s(k)
M,p

denote the
stationary Ck-germs that vanish at p, it is easy to show that

O(k)
M,p

/S(k)
M,p

∼= m(k)
M,p

/s(k)
M,p

.

(Given any f ∈ O(k)
M,p

, send it to f − f(p) ∈ m(k)
M,p

.) Clearly, (m(k)
M,p

)2 consists of stationary
germs (by the derivation property) and when k = ∞, Proposition 3.5 shows that every
stationary germ that vanishes at p belongs to m2

M,p
. Therefore, when k = ∞, we have

s(∞)
M,p

= m2
M,p

and so,

T ∗
p
(M) = O(∞)

M,p
/S(∞)

M,p
∼= mM,p/m

2
M,p

.

Remark: The ideal m(k)
M,p

is in fact the unique maximal ideal of O(k)
M,p

. This is because

if f ∈ O(k)
M,p

does not vanish at p, then it is an invertible element of O(k)
M,p

and any ideal

containing m(k)
M,p

and f would be equal to O(k)
M,p

, which it absurd. Thus, O(k)
M,p

is a local ring
(in the sense of commutative algebra) called the local ring of germs of Ck-functions at p.
These rings play a crucial role in algebraic geometry.

Yet one more way of defining tangent vectors will make it a little easier to define tangent
bundles.

Definition 3.12 (Tangent Vectors, Version 3) Given any Ck-manifold, M , of dimension n,
with k ≥ 1, for any p ∈ M , consider the triples, (U, ϕ, u), where (U, ϕ) is any chart at p and
u is any vector in R

n. Say that two such triples (U, ϕ, u) and (V, ψ, v) are equivalent iff

(ψ ◦ ϕ−1)�
ϕ(p)(u) = v.

A tangent vector to M at p is an equivalence class of triples, [(U, ϕ, u)], for the above
equivalence relation.

The intuition behind Definition 3.12 is quite clear: The vector u is considered as a tangent
vector to R

n at ϕ(p). If (U, ϕ) is a chart on M at p, we can define a natural isomorphism,
θU,ϕ,p : Rn → Tp(M), between R

n and Tp(M), as follows: For any u ∈ R
n,

θU,ϕ,p : u �→ [(U, ϕ, u)].

One immediately checks that the above map is indeed linear and a bijection.

The equivalence of this definition with the definition in terms of curves (Definition 3.7)
is easy to prove.
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Proposition 3.7 Let M be any Ck-manifold of dimension n, with k ≥ 1. For every p ∈ M ,
for every chart, (U, ϕ), at p, if x is any tangent vector (version 1) given by some equivalence
class of C1-curves, γ : ]− �,+�[→ M , through p (i.e., p = γ(0)), then the map

x �→ [(U, ϕ, (ϕ ◦ γ)�(0))]

is an isomorphism between Tp(M)-version 1 and Tp(M)-version 3.

Proof . If σ is another curve equivalent to γ, then (ϕ ◦ γ)�(0) = (ϕ ◦ σ)�(0), so the map is
well-defined. It is clearly injective. As for surjectivity, define the curve, γ, on M through p
by

γ(t) = ϕ−1(ϕ(p) + tu).

Then, (ϕ ◦ γ)(t) = ϕ(p) + tu and
(ϕ ◦ γ)�(0) = u.

After having explored thorougly the notion of tangent vector, we show how a Ck-map,
h : M → N , between Ck manifolds, induces a linear map, dhp : Tp(M) → Th(p)(N), for every
p ∈ M . We find it convenient to use Version 2 of the definition of a tangent vector. So, let
u ∈ Tp(M) be a linear derivation on O(k)

M,p
that vanishes on S(k)

M,p
. We would like dhp(u) to be

a linear derivation on O(k)
N,h(p) that vanishes on S(k)

N,h(p). So, for every germ, g ∈ O(k)
N,h(p), set

dhp(u)(g) = u(g ◦ h).

For any locally defined function, g, at h(p) in the germ, g (at h(p)), it is clear that g ◦ h is
locally defined at p and is Ck, so g ◦ h is indeed a Ck-germ at p. Moreover, if g is a stationary
germ at h(p), then for some chart, (V, ψ) on N at q = h(p), we have (g ◦ ψ−1)�(ψ(q)) = 0
and, for any chart, (U, ϕ), at p on M , we get

(g ◦ h ◦ ϕ−1)�(ϕ(p)) = (g ◦ ψ−1)�(ψ(q))((ψ ◦ h ◦ ϕ−1)�(ϕ(p))) = 0,

which means that g ◦ h is stationary at p. Therefore, dhp(u) ∈ Th(p)(M). It is also clear that
dhp is a linear map. We summarize all this in the following definition:

Definition 3.13 Given any two Ck-manifolds, M and N , of dimension m and n, respec-
tively, for any Ck-map, h : M → N , and for every p ∈ M , the differential of h at p or tangent
map, dhp : Tp(M) → Th(p)(N), is the linear map defined so that

dhp(u)(g) = u(g ◦ h),

for every u ∈ Tp(M) and every germ, g ∈ O(k)
N,h(p). The linear map dhp is also denoted Tph

(and sometimes, h�
p
or Dph).

The chain rule is easily generalized to manifolds.
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Proposition 3.8 Given any two Ck-maps f : M → N and g : N → P between smooth
Ck-manifolds, for any p ∈ M , we have

d(g ◦ f)p = dgf(p) ◦ dfp.

In the special case where N = R, a Ck-map between the manifolds M and R is just a
Ck-function on M . It is interesting to see what dfp is explicitly. Since N = R, germs (of
functions on R) at t0 = f(p) are just germs of Ck-functions, g : R → R, locally defined at t0.
Then, for any u ∈ Tp(M) and every germ g at t0,

dfp(u)(g) = u(g ◦ f).

If we pick a chart, (U, ϕ), on M at p, we know that the
�

∂

∂xi

�

p

form a basis of Tp(M), with

1 ≤ i ≤ n. Therefore, it is enough to figure out what dfp(u)(g) is when u =
�

∂

∂xi

�

p

. In this

case,

dfp

��
∂

∂xi

�

p

�
(g) =

∂(g ◦ f ◦ ϕ−1)

∂Xi

����
ϕ(p)

.

Using the chain rule, we find that

dfp

��
∂

∂xi

�

p

�
(g) =

�
∂

∂xi

�

p

f
dg

dt

����
t0

.

Therefore, we have

dfp(u) = u(f)
d

dt

����
t0

.

This shows that we can identify dfp with the linear form in T ∗
p
(M) defined by

dfp(u) = u(f), u ∈ TpM,

by identifying Tt0R with R. This is consistent with our previous definition of dfp as the image

of f in T ∗
p
(M) = O(k)

M,p
/S(k)

M,p
(as Tp(M) is isomorphic to (O(k)

M,p
/S(k)

M,p
)∗).

Again, even though this is just a restatement of facts we already showed, we state the
following proposition because of its practical usefulness:

Proposition 3.9 Given any Ck-manifold, M , of dimension n, with k ≥ 1, for any p ∈ M
and any chart (U, ϕ) at p, the n linear maps,

(dx1)p, . . . , (dxn)p,

form a basis of T ∗
p
M , where (dxi)p, the differential of xi at p, is identified with the linear

form in T ∗
p
M such that (dxi)p(v) = v(xi), for every v ∈ TpM (by identifying TλR with R).
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In preparation for the definition of the flow of a vector field (which will be needed to
define the exponential map in Lie group theory), we need to define the tangent vector to
a curve on a manifold. Given a Ck-curve, γ : ]a, b[ → M , on a Ck-manifold, M , for any
t0 ∈]a, b[ , we would like to define the tangent vector to the curve γ at t0 as a tangent vector
to M at p = γ(t0). We do this as follows: Recall that d

dt

��
t0
is a basis vector of Tt0(R) = R.

So, define the tangent vector to the curve γ at t0, denoted γ̇(t0) (or γ�(t0), or
dγ

dt
(t0)) by

γ̇(t0) = dγt0

�
d

dt

����
t0

�
.

Sometime, it is necessary to define curves (in a manifold) whose domain is not an open
interval. A map, γ : [a, b] → M , is a Ck-curve in M if it is the restriction of some Ck-curve,
�γ : ]a−�, b+�[→ M , for some (small) � > 0. Note that for such a curve (if k ≥ 1) the tangent
vector, γ̇(t), is defined for all t ∈ [a, b]. A continuous curve, γ : [a, b] → M , is piecewise Ck

iff there a sequence, a0 = a, a1, . . . , am = b, so that the restriction, γi, of γ to each [ai, ai+1]
is a Ck-curve, for i = 0, . . . ,m− 1. This implies that γ�

i
(ai+1) and γ�

i+1(ai+1) are defined for
i = 0, . . . ,m− 1, but there may be a jump in the tangent vector to γ at ai, that is, we may
have γ�

i
(ai+1) �= γ�

i+1(ai+1).

3.3 Tangent and Cotangent Bundles, Vector Fields, Lie
Derivative

Let M be a Ck-manifold (with k ≥ 2). Roughly speaking, a vector field on M is the
assignment, p �→ X(p), of a tangent vector, X(p) ∈ Tp(M), to a point p ∈ M . Generally,
we would like such assignments to have some smoothness properties when p varies in M ,
for example, to be C l, for some l related to k. Now, if the collection, T (M), of all tangent
spaces, Tp(M), was a C l-manifold, then it would be very easy to define what we mean by a
C l-vector field: We would simply require the map, X : M → T (M), to be C l.

If M is a Ck-manifold of dimension n, then we can indeed make T (M) into a Ck−1-
manifold of dimension 2n and we now sketch this construction.

We find it most convenient to use Version 3 of the definition of tangent vectors, i.e., as
equivalence classes of triples (U, ϕ, x), where (U, ϕ) is a chart and x ∈ R

n. First, we let
T (M) be the disjoint union of the tangent spaces Tp(M), for all p ∈ M . There is a natural
projection,

π : T (M) → M, where π(v) = p if v ∈ Tp(M).

We still have to give T (M) a topology and to define a Ck−1-atlas. For every chart, (U, ϕ),
of M (with U open in M) we define the function, �ϕ : π−1(U) → R

2n, by

�ϕ(v) = (ϕ ◦ π(v), θ−1
U,ϕ,π(v)(v)),
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where v ∈ π−1(U) and θU,ϕ,p is the isomorphism between R
n and Tp(M) described just after

Definition 3.12. It is obvious that �ϕ is a bijection between π−1(U) and ϕ(U)× R
n, an open

subset of R2n. We give T (M) the weakest topology that makes all the �ϕ continuous, i.e., we
take the collection of subsets of the form �ϕ−1(W ), where W is any open subset of ϕ(U)×R

n,
as a basis of the topology of T (M). One easily checks that T (M) is Hausdorff and second-
countable in this topology. If (U, ϕ) and (V, ψ) are overlapping charts, then the transition
map,

�ψ ◦ �ϕ−1 : ϕ(U ∩ V )× R
n −→ ψ(U ∩ V )× R

n

is given by

�ψ ◦ �ϕ−1(z, x) = (ψ ◦ ϕ−1(z), (ψ ◦ ϕ−1)�
z
(x)), (z, x) ∈ ϕ(U ∩ V )× R

n.

It is clear that �ψ ◦ �ϕ−1 is a Ck−1-map. Therefore, T (M) is indeed a Ck−1-manifold of
dimension 2n, called the tangent bundle.

Remark: Even if the manifoldM is naturally embedded in R
N (for someN ≥ n = dim(M)),

it is not at all obvious how to view the tangent bundle, T (M), as embedded in R
N

�
, for some

suitable N �. Hence, we see that the definition of an abtract manifold is unavoidable.

A similar construction can be carried out for the cotangent bundle. In this case, we
let T ∗(M) be the disjoint union of the cotangent spaces T ∗

p
(M). We also have a natural

projection, π : T ∗(M) → M , and we can define charts in several ways. One method used by
Warner [147] goes as follows: For any chart, (U, ϕ), on M , we define the function,
�ϕ : π−1(U) → R

2n, by

�ϕ(τ) =
�
ϕ ◦ π(τ), τ

��
∂

∂x1

�

π(τ)

�
, . . . , τ

��
∂

∂xn

�

π(τ)

��
,

where τ ∈ π−1(U) and the
�

∂

∂xi

�

p

are the basis of Tp(M) associated with the chart (U, ϕ).

Again, one can make T ∗(M) into a Ck−1-manifold of dimension 2n, called the cotangent
bundle. We leave the details as an exercise to the reader (Or, look at Berger and Gostiaux
[17]). Another method using Version 3 of the definition of tangent vectors is presented in
Section 7.2. For simplicity of notation, we also use the notation TM for T (M) (resp. T ∗M
for T ∗(M)).

Observe that for every chart, (U, ϕ), on M , there is a bijection

τU : π
−1(U) → U × R

n,

given by
τU(v) = (π(v), θ−1

U,ϕ,π(v)(v)).

Clearly, pr1 ◦ τU = π, on π−1(U). Thus, locally, that is, over U , the bundle T (M) looks like
the product U×R

n. We say that T (M) is locally trivial (over U) and we call τU a trivializing
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map. For any p ∈ M , the vector space π−1(p) = Tp(M) is called the fibre above p. Observe
that the restriction of τU to π−1(p) is an isomorphism between Tp(M) and {p} × R

n ∼= R
n,

for any p ∈ M . All these ingredients are part of being a vector bundle (but a little more is
required of the maps τU). For more on bundles, see Chapter 7, in particular, Section 7.2 on
vector bundles where the construction of the bundles TM and T ∗M is worked out in detail.
See also the references in Chapter 7.

When M = R
n, observe that T (M) = M × R

n = R
n × R

n, i.e., the bundle T (M) is
(globally) trivial.

Given a Ck-map, h : M → N , between two Ck-manifolds, we can define the function,
dh : T (M) → T (N), (also denoted Th, or h∗, or Dh) by setting

dh(u) = dhp(u), iff u ∈ Tp(M).

We leave the next proposition as an exercise to the reader (A proof can be found in
Berger and Gostiaux [17]).

Proposition 3.10 Given a Ck-map, h : M → N , between two Ck-manifolds M and N (with
k ≥ 1), the map dh : T (M) → T (N) is a Ck−1-map.

We are now ready to define vector fields.

Definition 3.14 Let M be a Ck+1 manifold, with k ≥ 1. For any open subset, U of M , a
vector field on U is any section, X, of T (M) over U , i.e., any function, X : U → T (M), such
that π ◦X = idU (i.e., X(p) ∈ Tp(M), for every p ∈ U). We also say that X is a lifting of U
into T (M). We say that X is a Ck-vector field on U iff X is a section over U and a Ck-map.
The set of Ck-vector fields over U is denoted Γ(k)(U, T (M)). Given a curve, γ : [a, b] → M , a
vector field, X, along γ is any section of T (M) over γ, i.e., a Ck-function, X : [a, b] → T (M),
such that π ◦X = γ. We also say that X lifts γ into T (M).

The above definition gives a precise meaning to the idea that a Ck-vector field on M is
an assignment, p �→ X(p), of a tangent vector, X(p) ∈ Tp(M), to a point, p ∈ M , so that
X(p) varies in a Ck-fashion in terms of p.

Clearly, Γ(k)(U, T (M)) is a real vector space. For short, the space Γ(k)(M,T (M)) is also
denoted by Γ(k)(T (M)) (or X(k)(M) or even Γ(T (M)) or X(M)).

Remark: We can also define a Cj-vector field on U as a section, X, over U which is a
Cj-map, where 0 ≤ j ≤ k. Then, we have the vector space, Γ(j)(U, T (M)), etc .

If M = R
n and U is an open subset of M , then T (M) = R

n ×R
n and a section of T (M)

over U is simply a function, X, such that

X(p) = (p, u), with u ∈ R
n,
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for all p ∈ U . In other words, X is defined by a function, f : U → R
n (namely, f(p) = u).

This corresponds to the “old” definition of a vector field in the more basic case where the
manifold, M , is just Rn.

Given any Ck-function, f ∈ Ck(U), and a vector field, X ∈ Γ(k)(U, T (M)), we define the
vector field, fX, by

(fX)(p) = f(p)X(p), p ∈ U.

Obviously, fX ∈ Γ(k)(U, T (M)), which shows that Γ(k)(U, T (M)) is also a Ck(U)-module.
We also denote X(p) by Xp. For any chart, (U, ϕ), on M it is easy to check that the map

p �→
�

∂

∂xi

�

p

, p ∈ U,

is a Ck-vector field on U (with 1 ≤ i ≤ n). This vector field is denoted
�

∂

∂xi

�
or ∂

∂xi
.

Definition 3.15 Let M be a Ck+1 manifold and let X be a Ck vector field on M . If U
is any open subset of M and f is any function in Ck(U), then the Lie derivative of f with
respect to X, denoted X(f) or LXf , is the function on U given by

X(f)(p) = Xp(f) = Xp(f), p ∈ U.

Observe that
X(f)(p) = dfp(Xp),

where dfp is identified with the linear form in T ∗
p
(M) defined by

dfp(v) = v(f), v ∈ TpM,

by identifying Tt0R with R (see the discussion following Proposition 3.8). The Lie derivative,
LXf , is also denoted X[f ].

As a special case, when (U, ϕ) is a chart on M , the vector field, ∂

∂xi
, just defined above

induces the function

p �→
�

∂

∂xi

�

p

f, p ∈ U,

denoted ∂

∂xi
(f) or

�
∂

∂xi

�
f .

It is easy to check that X(f) ∈ Ck−1(U). As a consequence, every vector field X ∈
Γ(k)(U, T (M)) induces a linear map,

LX : Ck(U) −→ Ck−1(U),

given by f �→ X(f). It is immediate to check that LX has the Leibnitz property, i.e.,

LX(fg) = LX(f)g + fLX(g).
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Linear maps with this property are called derivations . Thus, we see that every vector field
induces some kind of differential operator, namely, a linear derivation. Unfortunately, not
every linear derivation of the above type arises from a vector field, although this turns out to
be true in the smooth case i.e., when k = ∞ (for a proof, see Gallot, Hulin and Lafontaine
[60] or Lafontaine [92]).

In the rest of this section, unless stated otherwise, we assume that k ≥ 1. The following
easy proposition holds (c.f. Warner [147]):

Proposition 3.11 Let X be a vector field on the Ck+1-manifold, M , of dimension n. Then,
the following are equivalent:

(a) X is Ck.

(b) If (U, ϕ) is a chart on M and if f1, . . . , fn are the functions on U uniquely defined by

X � U =
n�

i=1

fi
∂

∂xi

,

then each fi is a Ck-map.

(c) Whenever U is open in M and f ∈ Ck(U), then X(f) ∈ Ck−1(U).

Given any two Ck-vector field, X, Y , on M , for any function, f ∈ Ck(M), we defined
above the function X(f) and Y (f). Thus, we can form X(Y (f)) (resp. Y (X(f))), which
are in Ck−2(M). Unfortunately, even in the smooth case, there is generally no vector field,
Z, such that

Z(f) = X(Y (f)), for all f ∈ Ck(M).

This is because X(Y (f)) (and Y (X(f))) involve second-order derivatives. However, if we
consider X(Y (f))−Y (X(f)), then second-order derivatives cancel out and there is a unique
vector field inducing the above differential operator. Intuitively, XY − Y X measures the
“failure of X and Y to commute”.

Proposition 3.12 Given any Ck+1-manifold, M , of dimension n, for any two Ck-vector
fields, X, Y , on M , there is a unique Ck−1-vector field, [X, Y ], such that

[X, Y ](f) = X(Y (f))− Y (X(f)), for all f ∈ Ck−1(M).

Proof . First we prove uniqueness. For this it is enough to prove that [X, Y ] is uniquely
defined on Ck(U), for any chart, (U, ϕ). Over U , we know that

X =
n�

i=1

Xi

∂

∂xi

and Y =
n�

i=1

Yi

∂

∂xi

,
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where Xi, Yi ∈ Ck(U). Then, for any f ∈ Ck(M), we have

X(Y (f)) = X

�
n�

j=1

Yj

∂

∂xj

(f)

�
=

n�

i,j=1

Xi

∂

∂xi

(Yj)
∂

∂xj

(f) +
n�

i,j=1

XiYj

∂2

∂xj∂xi

(f)

Y (X(f)) = Y

�
n�

i=1

Xi

∂

∂xi

(f)

�
=

n�

i,j=1

Yj

∂

∂xj

(Xi)
∂

∂xi

(f) +
n�

i,j=1

XiYj

∂2

∂xi∂xj

(f).

However, as f ∈ Ck(M), with k ≥ 2, we have

n�

i,j=1

XiYj

∂2

∂xj∂xi

(f) =
n�

i,j=1

XiYj

∂2

∂xi∂xj

(f),

and we deduce that

X(Y (f))− Y (X(f)) =
n�

i,j=1

�
Xi

∂

∂xi

(Yj)− Yi

∂

∂xi

(Xj)

�
∂

∂xj

(f).

This proves that [X, Y ] = XY − Y X is uniquely defined on U and that it is Ck−1. Thus, if
[X, Y ] exists, it is unique.

To prove existence, we use the above expression to define [X, Y ]U , locally on U , for every
chart, (U, ϕ). On any overlap, U ∩ V , by the uniqueness property that we just proved,
[X, Y ]U and [X, Y ]V must agree. But then, the [X, Y ]U patch and yield a Ck−1-vector field
defined on the whole of M .

Definition 3.16 Given any Ck+1-manifold, M , of dimension n, for any two Ck-vector fields,
X, Y , on M , the Lie bracket , [X, Y ], of X and Y , is the Ck−1 vector field defined so that

[X, Y ](f) = X(Y (f))− Y (X(f)), for all f ∈ Ck−1(M).

An an example, in R
3, if X and Y are the two vector fields,

X =
∂

∂x
+ y

∂

∂z
and Y =

∂

∂y
,

then

[X, Y ] = − ∂

∂z
.

We also have the following simple proposition whose proof is left as an exercise (or, see
Do Carmo [50]):

Proposition 3.13 Given any Ck+1-manifold, M , of dimension n, for any Ck-vector fields,
X, Y, Z, on M , for all f, g ∈ Ck(M), we have:
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(a) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 (Jacobi identity).

(b) [X,X] = 0.

(c) [fX, gY ] = fg[X, Y ] + fX(g)Y − gY (f)X.

(d) [−,−] is bilinear.

As a consequence, for smooth manifolds (k = ∞), the space of vector fields, Γ(∞)(T (M)),
is a vector space equipped with a bilinear operation, [−,−], that satisfies the Jacobi identity.
This makes Γ(∞)(T (M)) a Lie algebra.

Let ϕ : M → N be a diffeomorphism between two manifolds. Then, vector fields can be
transported from N to M and conversely.

Definition 3.17 Let ϕ : M → N be a diffeomorphism between two Ck+1 manifolds. For
every Ck vector field, Y , on N , the pull-back of Y along ϕ is the vector field, ϕ∗Y , on M ,
given by

(ϕ∗Y )p = dϕ−1
ϕ(p)(Yϕ(p)), p ∈ M.

For every Ck vector field, X, on M , the push-forward of X along ϕ is the vector field, ϕ∗X,
on N , given by

ϕ∗X = (ϕ−1)∗X,

that is, for every p ∈ M ,
(ϕ∗X)ϕ(p) = dϕp(Xp),

or equivalently,
(ϕ∗X)q = dϕϕ−1(q)(Xϕ−1(q)), q ∈ N.

It is not hard to check that

Lϕ∗Xf = LX(f ◦ ϕ) ◦ ϕ−1,

for any function f ∈ Ck(N).

One more notion will be needed when we deal with Lie algebras.

Definition 3.18 Let ϕ : M → N be a Ck+1-map of manifolds. If X is a Ck vector field on
M and Y is a Ck vector field on N , we say that X and Y are ϕ-related iff

dϕ ◦X = Y ◦ ϕ.

The basic result about ϕ-related vector fields is:

Proposition 3.14 Let ϕ : M → N be a Ck+1-map of manifolds, let X and Y be Ck vector
fields on M and let X1, Y1 be Ck vector fields on N . If X is ϕ-related to X1 and Y is
ϕ-related to Y1, then [X, Y ] is ϕ-related to [X1, Y1].

Proof . Basically, one needs to unwind the definitions, see Warner [147], Chapter 1.
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3.4 Submanifolds, Immersions, Embeddings

Although the notion of submanifold is intuitively rather clear, technically, it is a bit tricky.
In fact, the reader may have noticed that many different definitions appear in books and
that it is not obvious at first glance that these definitions are equivalent. What is important
is that a submanifold, N , of a given manifold, M , not only have the topology induced M
but also that the charts of N be somewhow induced by those of M . (Recall that if X is a
topological space and Y is a subset of X, then the subspace topology on Y or topology induced
by X on Y has for its open sets all subsets of the form Y ∩ U , where U is an arbitary open
subset of X.).

Given m,n, with 0 ≤ m ≤ n, we can view R
m as a subspace of Rn using the inclusion

R
m ∼= R

m × {(0, . . . , 0)� �� �
n−m

} �→ R
m × R

n−m = R
n, (x1, . . . , xm) �→ (x1, . . . , xm, 0, . . . , 0� �� �

n−m

).

Definition 3.19 Given a Ck-manifold, M , of dimension n, a subset, N , of M is an m-
dimensional submanifold of M (where 0 ≤ m ≤ n) iff for every point, p ∈ N , there is a
chart, (U, ϕ), of M , with p ∈ U , so that

ϕ(U ∩N) = ϕ(U) ∩ (Rm × {0n−m}).

(We write 0n−m = (0, . . . , 0)� �� �
n−m

.)

The subset, U ∩ N , of Definition 3.19 is sometimes called a slice of (U, ϕ) and we say
that (U, ϕ) is adapted to N (See O’Neill [119] or Warner [147]).

� Other authors, including Warner [147], use the term submanifold in a broader sense than
us and they use the word embedded submanifold for what is defined in Definition 3.19.

The following proposition has an almost trivial proof but it justifies the use of the word
submanifold:

Proposition 3.15 Given a Ck-manifold, M , of dimension n, for any submanifold, N , of
M of dimension m ≤ n, the family of pairs (U ∩ N,ϕ � U ∩ N), where (U, ϕ) ranges over
the charts over any atlas for M , is an atlas for N , where N is given the subspace topology.
Therefore, N inherits the structure of a Ck-manifold.

In fact, every chart on N arises from a chart on M in the following precise sense:

Proposition 3.16 Given a Ck-manifold, M , of dimension n and a submanifold, N , of M
of dimension m ≤ n, for any p ∈ N and any chart, (W, η), of N at p, there is some chart,
(U, ϕ), of M at p so that

ϕ(U ∩N) = ϕ(U) ∩ (Rm × {0n−m}) and ϕ � U ∩N = η � U ∩N,

where p ∈ U ∩N ⊆ W .
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Proof . See Berger and Gostiaux [17] (Chapter 2).

It is also useful to define more general kinds of “submanifolds”.

Definition 3.20 Let ϕ : N → M be a Ck-map of manifolds.

(a) The map ϕ is an immersion of N into M iff dϕp is injective for all p ∈ N .

(b) The set ϕ(N) is an immersed submanifold of M iff ϕ is an injective immersion.

(c) The map ϕ is an embedding of N into M iff ϕ is an injective immersion such that the
induced map, N −→ ϕ(N), is a homeomorphism, where ϕ(N) is given the subspace
topology (equivalently, ϕ is an open map from N into ϕ(N) with the subspace topol-
ogy). We say that ϕ(N) (with the subspace topology) is an embedded submanifold of
M .

(d) The map ϕ is a submersion of N into M iff dϕp is surjective for all p ∈ N .

� Again, we warn our readers that certain authors (such as Warner [147]) call ϕ(N), in
(b), a submanifold of M ! We prefer the terminology immersed submanifold .

The notion of immersed submanifold arises naturally in the framewok of Lie groups.
Indeed, the fundamental correspondence between Lie groups and Lie algebras involves Lie
subgroups that are not necessarily closed. But, as we will see later, subgroups of Lie groups
that are also submanifolds are always closed. It is thus necessary to have a more inclusive
notion of submanifold for Lie groups and the concept of immersed submanifold is just what’s
needed.

Immersions of R into R
3 are parametric curves and immersions of R2 into R

3 are para-
metric surfaces. These have been extensively studied, for example, see DoCarmo [49], Berger
and Gostiaux [17] or Gallier [58].

Immersions (i.e., subsets of the form ϕ(N), whereN is an immersion) are generally neither
injective immersions (i.e., subsets of the form ϕ(N), where N is an injective immersion) nor
embeddings (or submanifolds). For example, immersions can have self-intersections, as the
plane curve (nodal cubic): x = t2−1; y = t(t2−1). Note that the cuspidal cubic, t �→ (t2, t3),
is an injective map, but it is not an immersion since its derivative at the origin is zero.

Injective immersions are generally not embeddings (or submanifolds) because ϕ(N) may
not be homeomorphic to N . An example is given by the Lemniscate of Bernoulli, an injective
immersion of R into R

2:

x =
t(1 + t2)

1 + t4
,

y =
t(1− t2)

1 + t4
.
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Another interesting example is the immersion of R into the 2-torus, T 2 = S1 × S1 ⊆ R
4,

given by
t �→ (cos t, sin t, cos ct, sin ct),

where c ∈ R. One can show that the image of R under this immersion is closed in T 2 iff
c is rational. Moreover, the image of this immersion is dense in T 2 but not closed iff c is
irrational. The above example can be adapted to the torus in R

3: One can show that the
immersion given by

t �→ ((2 + cos t) cos(
√
2 t), (2 + cos t) sin(

√
2 t), sin t),

is dense but not closed in the torus (in R
3) given by

(s, t) �→ ((2 + cos s) cos t, (2 + cos s) sin t, sin s),

where s, t ∈ R.

There is, however, a close relationship between submanifolds and embeddings.

Proposition 3.17 If N is a submanifold of M , then the inclusion map, j : N → M , is an
embedding. Conversely, if ϕ : N → M is an embedding, then ϕ(N) with the subspace topology
is a submanifold of M and ϕ is a diffeomorphism between N and ϕ(N).

Proof . See O’Neill [119] (Chapter 1) or Berger and Gostiaux [17] (Chapter 2).

In summary, embedded submanifolds and (our) submanifolds coincide. Some authors
refer to spaces of the form ϕ(N), where ϕ is an injective immersion, as immersed submanifolds
and we have adopted this terminology. However, in general, an immersed submanifold is not
a submanifold. One case where this holds is when N is compact, since then, a bijective
continuous map is a homeomorphism. For yet a notion of submanifold intermediate between
immersed submanifolds and (our) submanifolds, see Sharpe [139] (Chapter 1).

Our next goal is to review and promote to manifolds some standard results about ordinary
differential equations.

3.5 Integral Curves, Flow of a Vector Field,
One-Parameter Groups of Diffeomorphisms

We begin with integral curves and (local) flows of vector fields on a manifold.

Definition 3.21 Let X be a Ck−1 vector field on a Ck-manifold, M , (k ≥ 2) and let p0 be a
point on M . An integral curve (or trajectory) for X with initial condition p0 is a Ck−1-curve,
γ : I → M , so that

γ̇(t) = X(γ(t)), for all t ∈ I and γ(0) = p0,

where I = ]a, b[ ⊆ R is an open interval containing 0.
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What definition 3.21 says is that an integral curve, γ, with initial condition p0 is a curve
on the manifold M passing through p0 and such that, for every point p = γ(t) on this curve,
the tangent vector to this curve at p, i.e., γ̇(t), coincides with the value, X(p), of the vector
field X at p.

Given a vector field, X, as above, and a point p0 ∈ M , is there an integral curve through
p0? Is such a curve unique? If so, how large is the open interval I? We provide some answers
to the above questions below.

Definition 3.22 Let X be a Ck−1 vector field on a Ck-manifold, M , (k ≥ 2) and let p0 be
a point on M . A local flow for X at p0 is a map,

ϕ : J × U → M,

where J ⊆ R is an open interval containing 0 and U is an open subset of M containing p0,
so that for every p ∈ U , the curve t �→ ϕ(t, p) is an integral curve of X with initial condition
p.

Thus, a local flow for X is a family of integral curves for all points in some small open set
around p0 such that these curves all have the same domain, J , independently of the initial
condition, p ∈ U .

The following theorem is the main existence theorem of local flows. This is a promoted
version of a similar theorem in the classical theory of ODE’s in the case where M is an open
subset of Rn. For a full account of this theory, see Lang [95] or Berger and Gostiaux [17].

Theorem 3.18 (Existence of a local flow) Let X be a Ck−1 vector field on a Ck-manifold,
M , (k ≥ 2) and let p0 be a point on M . There is an open interval, J ⊆ R, containing 0 and
an open subset, U ⊆ M , containing p0, so that there is a unique local flow, ϕ : J ×U → M ,
for X at p0. Furthermore, ϕ is Ck−1.

Theorem 3.18 holds under more general hypotheses, namely, when the vector field satisfies
some Lipschitz condition, see Lang [95] or Berger and Gostiaux [17].

Now, we know that for any initial condition, p0, there is some integral curve through p0.
However, there could be two (or more) integral curves γ1 : I1 → M and γ2 : I2 → M with
initial condition p0. This leads to the natural question: How do γ1 and γ2 differ on I1 ∩ I2?
The next proposition shows they don’t!

Proposition 3.19 Let X be a Ck−1 vector field on a Ck-manifold, M , (k ≥ 2) and let p0 be
a point on M . If γ1 : I1 → M and γ2 : I2 → M are any two integral curves both with initial
condition p0, then γ1 = γ2 on I1 ∩ I2.
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Proof . Let Q = {t ∈ I1∩I2 | γ1(t) = γ2(t)}. Since γ1(0) = γ2(0) = p0, the set Q is nonempty.
If we show that Q is both closed and open in I1 ∩ I2, as I1 ∩ I2 is connected since it is an
open interval of R, we will be able to conclude that Q = I1 ∩ I2.

Since by definition, a manifold is Hausdorff, it is a standard fact in topology that the
diagonal, ∆ = {(p, p) | p ∈ M} ⊆ M ×M , is closed, and since

Q = I1 ∩ I2 ∩ (γ1, γ2)
−1(∆)

and γ1 and γ2 are continuous, we see that Q is closed in I1 ∩ I2.

Pick any u ∈ Q and consider the curves β1 and β2 given by

β1(t) = γ1(t+ u) and β2(t) = γ2(t+ u),

where t ∈ I1 − u in the first case and t ∈ I2 − u in the second. (Here, if I = ]a, b[ , we have
I − u = ]a− u, b− u[ .) Observe that

β̇1(t) = γ̇1(t+ u) = X(γ1(t+ u)) = X(β1(t))

and similarly, β̇2(t) = X(β2(t)). We also have

β1(0) = γ1(u) = γ2(u) = β2(0) = q,

since u ∈ Q (where γ1(u) = γ2(u)). Thus, β1 : (I1 − u) → M and β2 : (I2 − u) → M are
two integral curves with the same initial condition, q. By Theorem 3.18, the uniqueness of
local flow implies that there is some open interval, �I ⊆ I1 ∩ I2 − u, such that β1 = β2 on �I.
Consequently, γ1 and γ2 agree on �I + u, an open subset of Q, proving that Q is indeed open
in I1 ∩ I2.

Proposition 3.19 implies the important fact that there is a unique maximal integral curve
with initial condition p. Indeed, if {γj : Ij → M}j∈K is the family of all integral curves with
initial condition p (for some big index set, K), if we let I(p) =

�
j∈K Ij, we can define a

curve, γp : I(p) → M , so that

γp(t) = γj(t), if t ∈ Ij.

Since γj and γl agree on Ij ∩ Il for all j, l ∈ K, the curve γp is indeed well defined and it is
clearly an integral curve with initial condition p with the largest possible domain (the open
interval, I(p)). The curve γp is called the maximal integral curve with initial condition p
and it is also denoted by γ(p, t). Note that Proposition 3.19 implies that any two distinct
integral curves are disjoint, i.e., do not intersect each other.

Consider the vector field in R
2 given by

X = −y
∂

∂x
+ x

∂

∂y
.
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If we write γ(t) = (x(t), y(t)), the differential equation, γ̇(t) = X(γ(t)), is expressed by

x�(t) = −y(t)

y�(t) = x(t),

or, in matrix form, �
x�

y�

�
=

�
0 −1
1 0

��
x

y

�
.

If we write X =
�
x

y

�
and A =

�
0 −1
1 0

�
, then the above equation is written as

X � = AX.

Now, as

etA = I +
A

1!
t+

A2

2!
t2 + · · ·+ An

n!
tn + · · · ,

we get
d

dt
(etA) = A+

A2

1!
t+

A3

2!
t2 + · · ·+ An

(n− 1)!
tn−1 + · · · = AetA,

so we see that etAp is a solution of the ODE X � = AX with initial condition X = p, and
by uniqueness, X = etAp is the solution of our ODE starting at X = p. Thus, our integral
curve, γp, through p =

�
x0

y0

�
is the circle given by

�
x

y

�
=

�
cos t − sin t
sin t cos t

��
x0

y0

�
.

Observe that I(p) = R, for every p ∈ R
2.

The following interesting question now arises: Given any p0 ∈ M , if γp0 : I(p0) → M is the
maximal integral curve with initial condition p0 and, for any t1 ∈ I(p0), if p1 = γp0(t1) ∈ M ,
then there is a maximal integral curve, γp1 : I(p1) → M , with initial condition p1; what is
the relationship between γp0 and γp1 , if any? The answer is given by

Proposition 3.20 Let X be a Ck−1 vector field on a Ck-manifold, M , (k ≥ 2) and let p0
be a point on M . If γp0 : I(p0) → M is the maximal integral curve with initial condition p0,
for any t1 ∈ I(p0), if p1 = γp0(t1) ∈ M and γp1 : I(p1) → M is the maximal integral curve
with initial condition p1, then

I(p1) = I(p0)− t1 and γp1(t) = γγp0 (t1)(t) = γp0(t+ t1), for all t ∈ I(p0)− t1.

Proof . Let γ(t) be the curve given by

γ(t) = γp0(t+ t1), for all t ∈ I(p0)− t1.
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Clearly, γ is defined on I(p0)− t1 and

γ̇(t) = γ̇p0(t+ t1) = X(γp0(t+ t1)) = X(γ(t))

and γ(0) = γp0(t1) = p1. Thus, γ is an integal curve defined on I(p0) − t1 with initial

condition p1. If γ was defined on an interval, �I ⊇ I(p0) − t1 with �I �= I(p0) − t1, then γp0
would be defined on �I + t1 ⊃ I(p0), an interval strictly bigger than I(p0), contradicting the
maximality of I(p0). Therefore, I(p0)− t1 = I(p1).

It is useful to restate Proposition 3.20 by changing point of view. So far, we have been
focusing on integral curves, i.e., given any p0 ∈ M , we let t vary in I(p0) and get an integral
curve, γp0 , with domain I(p0).

Instead of holding p0 ∈ M fixed, we can hold t ∈ R fixed and consider the set

Dt(X) = {p ∈ M | t ∈ I(p)},

i.e., the set of points such that it is possible to “travel for t units of time from p” along
the maximal integral curve, γp, with initial condition p (It is possible that Dt(X) = ∅). By
definition, if Dt(X) �= ∅, the point γp(t) is well defined, and so, we obtain a map,
ΦX

t
: Dt(X) → M , with domain Dt(X), given by

ΦX

t
(p) = γp(t).

The above suggests the following definition:

Definition 3.23 Let X be a Ck−1 vector field on a Ck-manifold, M , (k ≥ 2). For any t ∈ R,
let

Dt(X) = {p ∈ M | t ∈ I(p)} and D(X) = {(t, p) ∈ R×M | t ∈ I(p)}
and let ΦX : D(X) → M be the map given by

ΦX(t, p) = γp(t).

The map ΦX is called the (global) flow of X and D(X) is called its domain of definition.
For any t ∈ R such that Dt(X) �= ∅, the map, p ∈ Dt(X) �→ ΦX(t, p) = γp(t), is denoted by
ΦX

t
(i.e., ΦX

t
(p) = ΦX(t, p) = γp(t)).

Observe that
D(X) =

�

p∈M
(I(p)× {p}).

Also, using the ΦX

t
notation, the property of Proposition 3.20 reads

ΦX

s
◦ ΦX

t
= ΦX

s+t
, (∗)
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whenever both sides of the equation make sense. Indeed, the above says

ΦX

s
(ΦX

t
(p)) = ΦX

s
(γp(t)) = γγp(t)(s) = γp(s+ t) = ΦX

s+t
(p).

Using the above property, we can easily show that the ΦX

t
are invertible. In fact, the

inverse of ΦX

t
is ΦX

−t
. First, note that

D0(X) = M and ΦX

0 = id,

because, by definition, ΦX

0 (p) = γp(0) = p, for every p ∈ M . Then, (∗) implies that

ΦX

t
◦ ΦX

−t
= ΦX

t+−t
= ΦX

0 = id,

which shows that ΦX

t
: Dt(X) → D−t(X) and ΦX

−t
: D−t(X) → Dt(X) are inverse of each

other. Moreover, each ΦX

t
is a Ck−1-diffeomorphism. We summarize in the following propo-

sition some additional properties of the domains D(X), Dt(X) and the maps ΦX

t
(for a proof,

see Lang [95] or Warner [147]):

Theorem 3.21 Let X be a Ck−1 vector field on a Ck-manifold, M , (k ≥ 2). The following
properties hold:

(a) For every t ∈ R, if Dt(X) �= ∅, then Dt(X) is open (this is trivially true if Dt(X) = ∅).

(b) The domain, D(X), of the flow, ΦX , is open and the flow is a Ck−1 map,
ΦX : D(X) → M .

(c) Each ΦX

t
: Dt(X) → D−t(X) is a Ck−1-diffeomorphism with inverse ΦX

−t
.

(d) For all s, t ∈ R, the domain of definition of ΦX

s
◦ ΦX

t
is contained but generally not

equal to Ds+t(X). However, dom(ΦX

s
◦ ΦX

t
) = Ds+t(X) if s and t have the same sign.

Moreover, on dom(ΦX

s
◦ ΦX

t
), we have

ΦX

s
◦ ΦX

t
= ΦX

s+t
.

Remarks:

(1) We may omit the superscript, X, and write Φ instead of ΦX if no confusion arises.

(2) The reason for using the terminology flow in referring to the map ΦX can be clarified as
follows: For any t such that Dt(X) �= ∅, every integral curve, γp, with initial condition
p ∈ Dt(X), is defined on some open interval containing [0, t], and we can picture these
curves as “flow lines” along which the points p flow (travel) for a time interval t. Then,
ΦX(t, p) is the point reached by “flowing” for the amount of time t on the integral
curve γp (through p) starting from p. Intuitively, we can imagine the flow of a fluid
through M , and the vector field X is the field of velocities of the flowing particles.
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Given a vector field, X, as above, it may happen that Dt(X) = M , for all t ∈ R. In this
case, namely, when D(X) = R×M , we say that the vector field X is complete. Then, the ΦX

t

are diffeomorphisms of M and they form a group. The family {ΦX

t
}t∈R a called a 1-parameter

group of X. In this case, ΦX induces a group homomorphism, (R,+) −→ Diff(M), from the
additive group R to the group of Ck−1-diffeomorphisms of M .

By abuse of language, even when it is not the case that Dt(X) = M for all t, the family
{ΦX

t
}t∈R is called a local 1-parameter group generated by X, even though it is not a group,

because the composition ΦX

s
◦ ΦX

t
may not be defined.

If we go back to the vector field in R
2 given by

X = −y
∂

∂x
+ x

∂

∂y
,

since the integral curve, γp(t), through p =
�
x0

x0

�
is given by

�
x

y

�
=

�
cos t − sin t
sin t cos t

��
x0

y0

�
,

the global flow associated with X is given by

ΦX(t, p) =

�
cos t − sin t
sin t cos t

�
p,

and each diffeomorphism, ΦX

t
, is the rotation,

ΦX

t
=

�
cos t − sin t
sin t cos t

�
.

The 1-parameter group, {ΦX

t
}t∈R, generated by X is the group of rotations in the plane,

SO(2).

More generally, if B is an n × n invertible matrix that has a real logarithm, A (that is,
if eA = B), then the matrix A defines a vector field, X, in R

n, with

X =
n�

i,j=1

(aijxj)
∂

∂xi

,

whose integral curves are of the form,

γp(t) = etAp.

The one-parameter group, {ΦX

t
}t∈R, generated by X is given by {etA}t∈R.

When M is compact, it turns out that every vector field is complete, a nice and useful
fact.
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Proposition 3.22 Let X be a Ck−1 vector field on a Ck-manifold, M , (k ≥ 2). If M
is compact, then X is complete, i.e., D(X) = R × M . Moreover, the map t �→ ΦX

t
is a

homomorphism from the additive group R to the group, Diff(M), of (Ck−1) diffeomorphisms
of M .

Proof . Pick any p ∈ M . By Theorem 3.18, there is a local flow, ϕp : J(p) × U(p) → M ,
where J(p) ⊆ R is an open interval containing 0 and U(p) is an open subset of M containing
p, so that for all q ∈ U(p), the map t �→ ϕ(t, q) is an integral curve with initial condition q
(where t ∈ J(p)). Thus, we have J(p)× U(p) ⊆ D(X). Now, the U(p)’s form an open cover
of M and since M is compact, we can extract a finite subcover,

�
q∈F U(q) = M , for some

finite subset, F ⊆ M . But then, we can find � > 0 so that ] − �,+�[ ⊆ J(q), for all q ∈ F
and for all t ∈ ] − �,+�[ and, for all p ∈ M , if γp is the maximal integral curve with initial
condition p, then ]− �,+�[⊆ I(p).

For any t ∈ ]− �,+�[ , consider the integral curve, γγp(t), with initial condition γp(t). This
curve is well defined for all t ∈ ]− �,+�[ , and we have

γγp(t)(t) = γp(t+ t) = γp(2t),

which shows that γp is in fact defined for all t ∈ ]− 2�,+2�[ . By induction, we see that

]− 2n�,+2n�[⊆ I(p),

for all n ≥ 0, which proves that I(p) = R. As this holds for all p ∈ M , we conclude that
D(X) = R×M .

Remarks:

(1) The proof of Proposition 3.22 also applies when X is a vector field with compact
support (this means that the closure of the set {p ∈ M | X(p) �= 0} is compact).

(2) If ϕ : M → N is a diffeomorphism and X is a vector field on M , then it can be shown
that the local 1-parameter group associated with the vector field, ϕ∗X, is

(ϕ ◦ ΦX

t
◦ ϕ−1).

A point p ∈ M where a vector field vanishes, i.e., X(p) = 0, is called a critical point of X.
Critical points play a major role in the study of vector fields, in differential topology (e.g.,
the celebrated Poincaré–Hopf index theorem) and especially in Morse theory, but we won’t
go into this here (curious readers should consult Milnor [106], Guillemin and Pollack [69]
or DoCarmo [49], which contains an informal but very clear presentation of the Poincaré–
Hopf index theorem). Another famous theorem about vector fields says that every smooth
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vector field on a sphere of even dimension (S2n) must vanish in at least one point (the so-
called “hairy-ball theorem”. On S2, it says that you can’t comb your hair without having a
singularity somewhere. Try it, it’s true!).

Let us just observe that if an integral curve, γ, passes through a critical point, p, then γ
is reduced to the point p, i.e., γ(t) = p, for all t. Indeed, such a curve is an integral curve
with initial condition p. By the uniqueness property, it is the only one. Then, we see that
if a maximal integral curve is defined on the whole of R, either it is injective (it has no
self-intersection), or it is simply periodic (i.e., there is some T > 0 so that γ(t + T ) = γ(t),
for all t ∈ R and γ is injective on [0, T [ ), or it is reduced to a single point.

We conclude this section with the definition of the Lie derivative of a vector field with
respect to another vector field.

Say we have two vector fields X and Y on M . For any p ∈ M , we can flow along the
integral curve of X with initial condition p to Φt(p) (for t small enough) and then evaluate
Y there, getting Y (Φt(p)). Now, this vector belongs to the tangent space TΦt(p)(M), but
Y (p) ∈ Tp(M). So to “compare” Y (Φt(p)) and Y (p), we bring back Y (Φt(p)) to Tp(M) by
applying the tangent map, dΦ−t, at Φt(p), to Y (Φt(p)) (Note that to alleviate the notation,
we use the slight abuse of notation dΦ−t instead of d(Φ−t)Φt(p).) Then, we can form the
difference dΦ−t(Y (Φt(p)))− Y (p), divide by t and consider the limit as t goes to 0.

Definition 3.24 Let M be a Ck+1 manifold. Given any two Ck vector fields, X and Y on
M , for every p ∈ M , the Lie derivative of Y with respect to X at p, denoted (LX Y )p, is
given by

(LX Y )p = lim
t−→0

dΦ−t(Y (Φt(p)))− Y (p)

t
=

d

dt
(dΦ−t(Y (Φt(p))))

����
t=0

.

It can be shown that (LX Y )p is our old friend, the Lie bracket, i.e.,

(LX Y )p = [X, Y ]p.

(For a proof, see Warner [147] or O’Neill [119]).

In terms of Definition 3.17, observe that

(LX Y )p = lim
t−→0

�
(Φ−t)∗Y

�
(p)− Y (p)

t
= lim

t−→0

�
Φ∗

t
Y
�
(p)− Y (p)

t
=

d

dt

�
Φ∗

t
Y
�
(p)

����
t=0

,

since (Φ−t)−1 = Φt.

3.6 Partitions of Unity

To study manifolds, it is often necessary to construct various objects such as functions, vector
fields, Riemannian metrics, volume forms, etc., by gluing together items constructed on the
domains of charts. Partitions of unity are a crucial technical tool in this gluing process.
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The first step is to define “bump functions” (also called plateau functions). For any
r > 0, we denote by B(r) the open ball

B(r) = {(x1, . . . , xn) ∈ R
n | x2

1 + · · ·+ x2
n
< r},

and by B(r) = {(x1, . . . , xn) ∈ R
n | x2

1 + · · ·+ x2
n
≤ r}, its closure.

Proposition 3.23 There is a smooth function, b : Rn → R, so that

b(x) =

�
1 if x ∈ B(1)
0 if x ∈ R

n − B(2).

Proof . There are many ways to construct such a function. We can proceed as follows:
Consider the function, h : R → R, given by

h(x) =

�
e−1/x if x > 0
0 if x ≤ 0.

It is easy to show that h is C∞ (but not analytic!). Then, define b : Rn → R, by

b(x1, . . . , xn) =
h(4− x2

1 − · · · − x2
n
)

h(4− x2
1 − · · · − x2

n
) + h(x2

1 + · · ·+ x2
n
− 1)

.

It is immediately verified that b satisfies the required conditions.

Given a topological space, X, for any function, f : X → R, the support of f , denoted
supp f , is the closed set,

supp f = {x ∈ X | f(x) �= 0}.

Proposition 3.23 yields the following useful technical result:

Proposition 3.24 Let M be a smooth manifold. For any open subset, U ⊆ M , any p ∈ U
and any smooth function, f : U → R, there exist an open subset, V , with p ∈ V and a smooth
function, �f : M → R, defined on the whole of M , so that V is compact,

V ⊆ U, supp �f ⊆ U

and
�f(q) = f(q), for all q ∈ V .

Proof . Using a scaling function, it is easy to find a chart, (W,ϕ) at p, so that W ⊆ U ,
B(3) ⊆ ϕ(W ) and ϕ(p) = 0. Let �b = b ◦ ϕ, where b is the function given by Proposition
3.23. Then, �b is a smooth function on W with support ϕ−1(B(2)) ⊆ W . We can extend �b
outside W , by setting it to be 0 and we get a smooth function on the whole M . If we let
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V = ϕ−1(B(1)), then V is an open subset around p, V = ϕ−1(B(1)) ⊆ W is compact and,
clearly, �b = 1 on V . Therefore, if we set

�f(q) =
�
�b(q)f(q) if q ∈ W
0 if q ∈ M −W ,

we see that �f satisfies the required properties.

If X is a (Hausdorff) topological space, a family, {Uα}α∈I , of subsets Uα of X is a cover
(or covering) of X iff X =

�
α∈I Uα. A cover, {Uα}α∈I , such that each Uα is open is an

open cover . If {Uα}α∈I is a cover of X, for any subset, J ⊆ I, the subfamily {Uα}α∈J is a
subcover of {Uα}α∈I if X =

�
α∈J Uα, i.e., {Uα}α∈J is still a cover of X. Given two covers,

{Uα}α∈I and {Vβ}β∈J , we say that {Uα}α∈I is a refinement of {Vβ}β∈J iff there is a function,
h : I → J , so that Uα ⊆ Vh(α), for all α ∈ I.

A cover, {Uα}α∈I , is locally finite iff for every point, p ∈ X, there is some open subset,
U , with p ∈ U , so that U ∩Uα �= ∅ for only finitely many α ∈ I. A space, X, is paracompact
iff every open cover has an open locally finite refinement.

Remark: Recall that a space, X, is compact iff it is Hausdorff and if every open cover
has a finite subcover. Thus, the notion of paracompactess (due to Jean Dieudonné) is a
generalization of the notion of compactness.

Recall that a topological space, X, is second-countable if it has a countable basis, i.e., if
there is a countable family of open subsets, {Ui}i≥1, so that every open subset of X is the
union of some of the Ui’s. A topological space, X, if locally compact iff it is Hausdorff and
for every a ∈ X, there is some compact subset, K, and some open subset, U , with a ∈ U
and U ⊆ K. As we will see shortly, every locally compact and second-countable topological
space is paracompact.

It is important to observe that every manifold (even not second-countable) is locally
compact. Indeed, for every p ∈ M , if we pick a chart, (U, ϕ), around p, then ϕ(U) = Ω for
some open Ω ⊆ R

n (n = dimM). So, we can pick a small closed ball, B(q, �) ⊆ Ω, of center
q = ϕ(p) and radius �, and as ϕ is a homeomorphism, we see that

p ∈ ϕ−1(B(q, �/2)) ⊆ ϕ−1(B(q, �)),

where ϕ−1(B(q, �)) is compact and ϕ−1(B(q, �/2)) is open.

Finally, we define partitions of unity.

Definition 3.25 Let M be a (smooth) manifold. A partition of unity on M is a family,
{fi}i∈I , of smooth functions on M (the index set I may be uncountable) such that

(a) The family of supports, {supp fi}i∈I , is locally finite.
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(b) For all i ∈ I and all p ∈ M , we have 0 ≤ fi(p) ≤ 1, and

�

i∈I
fi(p) = 1, for every p ∈ M.

If {Uα}α∈J is a cover of M , we say that the partition of unity {fi}i∈I is subordinate to the
cover {Uα}α∈J if {supp fi}i∈I is a refinement of {Uα}α∈J . When I = J and supp fi ⊆ Ui, we
say that {fi}i∈I is subordinate to {Uα}α∈I with the same index set as the partition of unity .

In Definition 3.25, by (a), for every p ∈ M , there is some open set, U , with p ∈ U and U
meets only finitely many of the supports, supp fi. So, fi(p) �= 0 for only finitely many i ∈ I
and the infinite sum

�
i∈I fi(p) is well defined.

Proposition 3.25 Let X be a topological space which is second-countable and locally com-
pact (thus, also Hausdorff). Then, X is paracompact. Moreover, every open cover has a
countable, locally finite refinement consisting of open sets with compact closures.

Proof . The proof is quite technical, but since this is an important result, we reproduce
Warner’s proof for the reader’s convenience (Warner [147], Lemma 1.9).

The first step is to construct a sequence of open sets, Gi, such that

1. Gi is compact,

2. Gi ⊆ Gi+1,

3. X =
�∞

i=1 Gi.

As M is second-countable, there is a countable basis of open sets, {Ui}i≥1, for M . Since M
is locally compact, we can find a subfamily of {Ui}i≥1 consisting of open sets with compact
closures such that this subfamily is also a basis of M . Therefore, we may assume that we
start with a countable basis, {Ui}i≥1, of open sets with compact closures. Set G1 = U1 and
assume inductively that

Gk = U1 ∪ · · · ∪ Ujk
.

Since Gk is compact, it is covered by finitely many of the Uj’s. So, let jk+1 be the smallest
integer greater than jk so that

Gk ⊆ U1 ∪ · · · ∪ Ujk+1

and set
Gk+1 = U1 ∪ · · · ∪ Ujk+1

.

Obviously, the family {Gi}i≥1 satisfies (1)–(3).

Now, let {Uα}α∈I be an arbitrary open cover of M . For any i ≥ 3, the set Gi − Gi−1 is
compact and contained in the open Gi+1 − Gi−2. For each i ≥ 3, choose a finite subcover
of the open cover {Uα ∩ (Gi+1 −Gi−2)}α∈I of Gi −Gi−1, and choose a finite subcover of the



158 CHAPTER 3. MANIFOLDS

open cover {Uα ∩G3}α∈I of the compact set G2. We leave it to the reader to check that this
family of open sets is indeed a countable, locally finite refinement of the original open cover
{Uα}α∈I and consists of open sets with compact closures.

Remarks:

1. Proposition 3.25 implies that a second-countable, locally compact (Hausdorff) topo-
logical space is the union of countably many compact subsets. Thus, X is countable at
infinity , a notion that we already encountered in Proposition 2.23 and Theorem 2.26.
The reason for this odd terminology is that in the Alexandroff one-point compactifica-
tion ofX, the family of open subsets containing the point at infinity (ω) has a countable
basis of open sets. (The open subsets containing ω are of the form (M − K) ∪ {ω},
where K is compact.)

2. A manifold that is countable at infinity has a countable open cover by domains of
charts. This is because, if M =

�
i≥1 Ki, where the Ki ⊆ M are compact, then for any

open cover of M by domains of charts, for every Ki, we can extract a finite subcover,
and the union of these finite subcovers is a countable open cover of M by domains
of charts. But then, since for every chart, (Ui, ϕi), the map ϕi is a homeomorphism
onto some open subset of Rn, which is second-countable, so we deduce easily that M
is second-countable. Thus, for manifolds, second-countable is equivalent to countable
at infinity.

We can now prove the main theorem stating the existence of partitions of unity. Recall
that we are assuming that our manifolds are Hausdorff and second-countable.

Theorem 3.26 Let M be a smooth manifold and let {Uα}α∈I be an open cover for M .
Then, there is a countable partition of unity, {fi}i≥1, subordinate to the cover {Uα}α∈I and
the support, supp fi, of each fi is compact. If one does not require compact supports, then
there is a partition of unity, {fα}α∈I , subordinate to the cover {Uα}α∈I with at most countably
many of the fα not identically zero. (In the second case, supp fα ⊆ Uα.)

Proof . Again, we reproduce Warner’s proof (Warner [147], Theorem 1.11). As our manifolds
are second-countable, Hausdorff and locally compact, from the proof of Proposition 3.25, we
have the sequence of open subsets, {Gi}i≥1 and we set G0 = ∅. For any p ∈ M , let ip be the
largest integer such that p ∈ M −Gip . Choose an αp such that p ∈ Uαp ; we can find a chart,

(U, ϕ), centered at p such that U ⊆ Uαp ∩ (Gip+2 −Gip) and such that B(2) ⊆ ϕ(U). Define

ψp =

�
b ◦ ϕ on U
0 on M − U ,

where b is the bump function defined just before Proposition 3.23. Then, ψp is a smooth
function on M which has value 1 on some open subset, Wp, containing p and has compact
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support lying in U ⊆ Uαp∩(Gip+2−Gip). For each i ≥ 1, choose a finite set of points, p ∈ M ,
whose corresponding opens, Wp, cover Gi − Gi−1. Order the corresponding ψp functions in
a sequence, ψj, j = 1, 2, . . . . The supports of the ψj form a locally finite family of subsets
of M . Thus, the function

ψ =
∞�

j=1

ψj

is well-defined on M and smooth. Moreover, ψ(p) > 0 for each p ∈ M . For each i ≥ 1, set

fi =
ψi

ψ
.

Then, the family, {fi}i≥1, is a partition of unity subordinate to the cover {Uα}α∈I and supp fi
is compact for all i ≥ 1.

Now, when we don’t require compact support, if we let fα be identically zero if no fi
has support in Uα and otherwise let fα be the sum of the fi with support in Uα, then we
obtain a partition of unity subordinate to {Uα}α∈I with at most countably many of the fα
not identically zero. We must have supp fα ⊆ Uα because for any locally finite family of
closed sets, {Fβ}β∈J , we have

�
β∈J Fβ =

�
β∈J Fβ.

We close this section by stating a famous theorem of Whitney whose proof uses partitions
of unity.

Theorem 3.27 (Whitney, 1935) Any smooth manifold (Hausdorff and second-countable),
M , of dimension n is diffeomorphic to a closed submanifold of R2n+1.

For a proof, see Hirsch [76], Chapter 2, Section 2, Theorem 2.14.

3.7 Manifolds With Boundary

Up to now, we have defined manifolds locally diffeomorphic to an open subset of Rm. This
excludes many natural spaces such as a closed disk, whose boundary is a circle, a closed ball,
B(1), whose boundary is the sphere, Sm−1, a compact cylinder, S1 × [0, 1], whose boundary
consist of two circles, a Möbius strip, etc. These spaces fail to be manifolds because they
have a boundary, that is, neighborhoods of points on their boundaries are not diffeomorphic
to open sets in R

m. Perhaps the simplest example is the (closed) upper half space,

H
m = {(x1, . . . , xm) ∈ R

m | xm ≥ 0}.

Under the natural emdedding R
m−1 ∼= R

m−1×{0} �→ R
m, the subset ∂Hm of Hm defined by

∂Hm = {x ∈ H
m | xm = 0}
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is isomorphic to R
m−1 and is called the boundary of Hm. We also define the interior of Hm

as
Int(Hm) = H

m − ∂Hm.

Now, if U and V are open subsets of Hm, where H
m ⊆ R

m has the subset topology, and
if f : U → V is a continuous function, we need to explain what we mean by f being smooth.
We say that f : U → V , as above, is smooth if it has an extension, �f : �U → �V , where �U and
�V are open subsets of Rm with U ⊆ �U and V ⊆ �V and with �f a smooth function. We say
that f is a (smooth) diffeomorphism iff f−1 exists and if both f and f−1 are smooth, as just
defined.

To define a manifold with boundary , we replace everywhere R by H in Definition 3.1 and
Definition 3.2. So, for instance, given a topological space, M , a chart is now pair, (U, ϕ),
where U is an open subset of M and ϕ : U → Ω is a homeomorphism onto an open subset,
Ω = ϕ(U), of Hnϕ (for some nϕ ≥ 1), etc. Thus, we obtain

Definition 3.26 Given some integer n ≥ 1 and given some k such that k is either an integer
k ≥ 1 or k = ∞, a Ck-manifold of dimension n with boundary consists of a topological space,
M , together with an equivalence class, A, of Ck n-atlases, on M (where the charts are now
defined in terms of open subsets of Hn). Any atlas, A, in the equivalence class A is called a
differentiable structure of class Ck (and dimension n) on M . We say that M is modeled on
H

n. When k = ∞, we say that M is a smooth manifold with boundary .

It remains to define what is the boundary of a manifold with boundary! By definition, the
boundary , ∂M , of a manifold (with boundary), M , is the set of all points, p ∈ M , such that
there is some chart, (Uα, ϕα), with p ∈ Uα and ϕα(p) ∈ ∂Hn. We also let Int(M) = M −∂M
and call it the interior of M .� Do not confuse the boundary ∂M and the interior Int(M) of a manifold with bound-

ary embedded in R
N with the topological notions of boundary and interior of M as a

topological space. In general, they are different.

Note that manifolds as defined earlier (In Definition 3.3) are also manifolds with bound-
ary: their boundary is just empty. We shall still reserve the word “manifold” for these, but
for emphasis, we will sometimes call them “boundaryless”.

The definition of tangent spaces, tangent maps, etc., are easily extended to manifolds
with boundary. The reader should note that if M is a manifold with boundary of dimension
n, the tangent space, TpM , is defined for all p ∈ M and has dimension n, even for boundary
points, p ∈ ∂M . The only notion that requires more care is that of a submanifold. For more
on this, see Hirsch [76], Chapter 1, Section 4. One should also beware that the product of two
manifolds with boundary is generally not a manifold with boundary (consider the product
[0, 1]× [0, 1] of two line segments). There is a generalization of the notion of a manifold with
boundary called manifold with corners and such manifolds are closed under products (see
Hirsch [76], Chapter 1, Section 4, Exercise 12).
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If M is a manifold with boundary, we see that Int(M) is a manifold without boundary.
What about ∂M? Interestingly, the boundary, ∂M , of a manifold with boundary, M , of
dimension n, is a manifold of dimension n− 1. For this, we need the following Proposition:

Proposition 3.28 If M is a manifold with boundary of dimension n, for any p ∈ ∂M on
the boundary on M , for any chart, (U, ϕ), with p ∈ M , we have ϕ(p) ∈ ∂Hn.

Proof . Since p ∈ ∂M , by definition, there is some chart, (V, ψ), with p ∈ V and ψ(p) ∈ ∂Hn.
Let (U, ϕ) be any other chart, with p ∈ M and assume that q = ϕ(p) ∈ Int(Hn). The
transition map, ψ◦ϕ−1 : ϕ(U ∩V ) → ψ(U ∩V ), is a diffeomorphism and q = ϕ(p) ∈ Int(Hn).
By the inverse function theorem, there is some open, W ⊆ ϕ(U ∩ V ) ∩ Int(Hn) ⊆ R

n, with
q ∈ W , so that ψ ◦ ϕ−1 maps W homeomorphically onto some subset, Ω, open in Int(Hn),
with ψ(p) ∈ Ω, contradicting the hypothesis, ψ(p) ∈ ∂Hn.

Using Proposition 3.28, we immediately derive the fact that ∂M is a manifold of dimen-
sion n− 1. We obtain charts on ∂M by considering the charts (U ∩ ∂M,L ◦ϕ), where (U, ϕ)
is a chart on M such that U ∩ ∂M = ϕ−1(∂Hn) �= ∅ and L : ∂Hn → R

n−1 is the natural
isomorphism (see see Hirsch [76], Chapter 1, Section 4).

3.8 Orientation of Manifolds

Although the notion of orientation of a manifold is quite intuitive it is technically rather
subtle. We restrict our discussion to smooth manifolds (although the notion of orientation
can also be defined for topological manifolds but more work is involved).

Intuitively, a manifold, M , is orientable if it is possible to give a consistent orientation to
its tangent space, TpM , at every point, p ∈ M . So, if we go around a closed curve starting
at p ∈ M , when we come back to p, the orientation of TpM should be the same as when we
started. For exampe, if we travel on a Möbius strip (a manifold with boundary) dragging a
coin with us, we will come back to our point of departure with the coin flipped. Try it!

To be rigorous, we have to say what it means to orient TpM (a vector space) and what
consistency of orientation means. We begin by quickly reviewing the notion of orientation of
a vector space. Let E be a vector space of dimension n. If u1, . . . , un and v1, . . . , vn are two
bases of E, a basic and crucial fact of linear algebra says that there is a unique linear map,
g, mapping each ui to the corresponding vi (i.e., g(ui) = vi, i = 1, . . . , n). Then, look at the
determinant, det(g), of this map. We know that det(g) = det(P ), where P is the matrix
whose j-th columns consist of the coordinates of vj over the basis u1, . . . , un. Either det(g)
is negative or it is positive. Thus, we define an equivalence relation on bases by saying that
two bases have the same orientation iff the determinant of the linear map sending the first
basis to the second has positive determinant. An orientation of E is the choice of one of the
two equivalence classes, which amounts to picking some basis as an orientation frame.

The above definition is perfectly fine but it turns out that it is more convenient, in the long
term, to use a definition of orientation in terms of alternate multi-linear maps (in particular,
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to define the notion of integration on a manifold). Recall that a function, h : Ek → R, is
alternate multi-linear (or alternate k-linear) iff it is linear in each of its arguments (holding
the others fixed) and if

h(. . . , x, . . . , x, . . .) = 0,

that is, h vanishes whenever two of its arguments are identical. Using multi-linearity, we
immediately deduce that h vanishes for all k-tuples of arguments, u1, . . . , uk, that are linearly
dependent and that h is skew-symmetric, i.e.,

h(. . . , y, . . . , x, . . .) = −h(. . . , x, . . . , y, . . .).

In particular, for k = n, it is easy to see that if u1, . . . , un and v1, . . . , vn are two bases, then

h(v1, . . . , vn) = det(g)h(u1, . . . , un),

where g is the unique linear map sending each ui to vi. This shows that any alternating
n-linear function is a multiple of the determinant function and that the space of alternating
n-linear maps is a one-dimensional vector space that we will denote

�
n E∗.1 We also call

an alternating n-linear map an n-form. But then, observe that two bases u1, . . . , un and
v1, . . . , vn have the same orientation iff

ω(u1, . . . , un) and ω(v1, . . . , vn) have the same sign for all ω ∈
�

n E∗ − {0}

(where 0 denotes the zero n-form). As
�

n E∗ is one-dimensional, picking an orientation of
E is equivalent to picking a generator (a one-element basis), ω, of

�
n E∗, and to say that

u1, . . . , un has positive orientation iff ω(u1, . . . , un) > 0.

Given an orientation (say, given by ω ∈
�

n E∗) of E, a linear map, f : E → E, is orien-
tation preserving iff ω(f(u1), . . . , f(un)) > 0 whenever ω(u1, . . . , un) > 0 (or equivalently, iff
det(f) > 0).

Now, to define the orientation of an n-dimensional manifold, M , we use charts. Given
any p ∈ M , for any chart, (U, ϕ), at p, the tangent map, dϕ−1

ϕ(p) : R
n → TpM makes sense.

If (e1, . . . , en) is the standard basis of Rn, as it gives an orientation to R
n, we can orient

TpM by giving it the orientation induced by the basis dϕ−1
ϕ(p)(e1), . . . , dϕ

−1
ϕ(p)(en). Then, the

consistency of orientations of the TpM ’s is given by the overlapping of charts. We require that
the Jacobian determinants of all ϕj ◦ϕ−1

i
have the same sign, whenever (Ui, ϕi) and (Uj, ϕj)

are any two overlapping charts. Thus, we are led to the definition below. All definitions and
results stated in the rest of this section apply to manifolds with or without boundary.

1We are using the wedge product notation of exterior calculus even though we have not defined alternating
tensors and the wedge product yet. This is standard notation and we hope that the reader will not be
confused. In fact, in finite dimension, the space of alternating n-linear maps and

�n E∗ are isomorphic. A
thorough treatment of tensor algebra, including exterior algebra, and of differential forms, will be given in
Chapters 22 and 8.
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Definition 3.27 Given a smooth manifold, M , of dimension n, an orientation atlas of M
is any atlas so that the transition maps, ϕj

i
= ϕj ◦ϕ−1

i
, (from ϕi(Ui ∩Uj) to ϕj(Ui ∩Uj)) all

have a positive Jacobian determinant for every point in ϕi(Ui∩Uj). A manifold is orientable
iff its has some orientation atlas.

Definition 3.27 can be hard to check in practice and there is an equivalent criterion is
terms of n-forms which is often more convenient. The idea is that a manifold of dimension
n is orientable iff there is a map, p �→ ωp, assigning to every point, p ∈ M , a nonzero
n-form, ωp ∈

�
n T ∗

p
M , so that this map is smooth. In order to explain rigorously what it

means for such a map to be smooth, we can define the exterior n-bundle,
�

n T ∗M (also
denoted

�∗
n
M) in much the same way that we defined the bundles TM and T ∗M . There

is an obvious smooth projection map, π :
�

n T ∗M → M . Then, leaving the details of the
fact that

�
n T ∗M can be made into a smooth manifold (of dimension n) as an exercise, a

smooth map, p �→ ωp, is simply a smooth section of the bundle
�

n T ∗M , i.e., a smooth map,
ω : M →

�
n T ∗M , so that π ◦ ω = id.

Definition 3.28 If M is an n-dimensional manifold, a smooth section, ω ∈ Γ(M,
�

n T ∗M),
is called a (smooth) n-form. The set of n-forms, Γ(M,

�
n T ∗M), is also denoted An(M).

An n-form, ω, is a nowhere-vanishing n-form on M or volume form on M iff ωp is a nonzero
form for every p ∈ M . This is equivalent to saying that ωp(u1, . . . , un) �= 0, for all p ∈ M
and all bases, u1, . . . , un, of TpM .

The determinant function, (u1, . . . , un) �→ det(u1, . . . , un), where the ui are expressed
over the canonical basis (e1, . . . , en) of Rn, is a volume form on R

n. We will denote this
volume form by ω0. Another standard notation is dx1 ∧ · · · ∧ dxn, but this notation may
be very puzzling for readers not familiar with exterior algebra. Observe the justification
for the term volume form: the quantity det(u1, . . . , un) is indeed the (signed) volume of the
parallelepiped

{λ1u1 + · · ·+ λnun | 0 ≤ λi ≤ 1, 1 ≤ i ≤ n}.
A volume form on the sphere Sn ⊆ R

n+1 is obtained as follows:

ωp(u1, . . . un) = det(p, u1, . . . un),

where p ∈ Sn and u1, . . . un ∈ TpSn. As the ui are orthogonal to p, this is indeed a volume
form.

Observe that if f is a smooth function on M and ω is any n-form, then fω is also an
n-form.

Definition 3.29 Let ϕ : M → N be a smooth map of manifolds of the same dimension, n,
and let ω ∈ An(N) be an n-form on N . The pull-back, ϕ∗ω, of ω to M is the n-form on M
given by

ϕ∗ωp(u1, . . . , un) = ωϕ(p)(dϕp(u1), . . . , dϕp(un)),

for all p ∈ M and all u1, . . . , un ∈ TpM .
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One checks immediately that ϕ∗ω is indeed an n-form on M . More interesting is the
following Proposition:

Proposition 3.29 (a) If ϕ : M → N is a local diffeomorphism of manifolds, where dimM =
dimN = n, and ω ∈ An(N) is a volume form on N , then ϕ∗ω is a volume form on M . (b)
Assume M has a volume form, ω. Then, for every n-form, η ∈ An(M), there is a unique
smooth function, f ∈ C∞(M), so that η = fω. If η is a volume form, then f(p) �= 0 for all
p ∈ M .

Proof . (a) By definition,

ϕ∗ωp(u1, . . . , un) = ωϕ(p)(dϕp(u1), . . . , dϕp(un)),

for all p ∈ M and all u1, . . . , un ∈ TpM . As ϕ is a local diffeomorphism, dpϕ is a bijection for
every p. Thus, if u1, . . . , un is a basis, then so is dϕp(u1), . . . , dϕp(un), and as ω is nonzero
at every point for every basis, ϕ∗ωp(u1, . . . , un) �= 0.

(b) Pick any p ∈ M and let (U, ϕ) be any chart at p. As ϕ is a diffeomorphism, by (a), we
see that ϕ−1∗ω is a volume form on ϕ(U). But then, it is easy to see that ϕ−1∗η = gϕ−1∗ω, for
some unique smooth function, g, on ϕ(U) and so, η = fUω, for some unique smooth function,
fU , on U . For any two overlapping charts, (Ui, ϕi) and (Uj, ϕj), for every p ∈ Ui ∩ Uj, for
every basis u1, . . . , un of TpM , we have

ηp(u1, . . . , un) = fi(p)ωp(u1, . . . , un) = fj(p)ωp(u1, . . . , un),

and as ωp(u1, . . . , un) �= 0, we deduce that fi and fj agree on Ui ∩ Uj. But, then the fi’s
patch on the overlaps of the cover, {Ui}, of M , and so, there is a smooth function, f , defined
on the whole of M and such that f � Ui = fi. As the fi’s are unique, so is f . If η is a volume
form, then ηp does not vanish for all p ∈ M and since ωp is also a volume form, ωp does not
vanish for all p ∈ M , so f(p) �= 0 for all p ∈ M .

Remark: If ϕ and ψ are smooth maps of manifolds, it is easy to prove that

(ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗

and that
ϕ∗(fω) = (f ◦ ϕ)ϕ∗ω,

where f is any smooth function on M and ω is any n-form.

The connection between Definition 3.27 and volume forms is given by the following im-
portant theorem whose proof contains a wonderful use of partitions of unity.

Theorem 3.30 A smooth manifold (Hausdorff and second-countable) is orientable iff it pos-
sesses a volume form.
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Proof . First, assume that a volume form, ω, exists on M , and say n = dimM . For any atlas,
{(Ui, ϕi)}i, of M , by Proposition 3.29, each n-form, ϕ−1

i

∗
ω, is a volume form on ϕi(Ui) ⊆ R

n

and
ϕ−1
i

∗
ω = fiω0,

for some smooth function, fi, never zero on ϕi(Ui), where ω0 is a volume form on R
n. By

composing ϕi with an orientation-reversing linear map if necessary, we may assume that for
this new altlas, fi > 0 on ϕi(Ui). We claim that the family (Ui, ϕi)i is an orientation atlas.
This is because, on any (nonempty) overlap, Ui ∩ Uj, as ω = ϕ∗

j
(fjω0) and

(ϕj ◦ ϕ−1
i
)∗ = (ϕ−1

i
)∗ ◦ ϕ∗

j
, we have

(ϕj ◦ ϕ−1
i
)∗(fjω0) = fiω0,

and by the definition of pull-backs, we see that for every x ∈ ϕi(Ui ∩ Uj), if we let
y = ϕj ◦ ϕ−1

i
(x), then

fi(x)(ω0)x(e1, . . . , en) = (ϕj ◦ ϕ−1
i
)∗
x
(fjω0)(e1, . . . , en)

= fj(y)(ω0)yd(ϕj ◦ ϕ−1
i
)x(e1), . . . , d(ϕj ◦ ϕ−1

i
)x(en))

= fj(y)J((ϕj ◦ ϕ−1
i
)x)(ω0)y(e1, . . . , en),

where e1, . . . , en is the standard basis of Rn and J((ϕj ◦ ϕ−1
i
)x) is the Jacobian determinant

of ϕj ◦ ϕ−1
i

at x. As both fj(y) > 0 and fi(x) > 0, we have J((ϕj ◦ ϕ−1
i
)x) > 0, as desired.

Conversely, assume that J((ϕj ◦ϕ−1
i
)x) > 0, for all x ∈ ϕi(Ui∩Uj), whenever Ui∩Uj �= ∅.

We need to make a volume form on M . For each Ui, let

ωi = ϕ∗
i
ω0,

where ω0 is a volume form on R
n. As ϕi is a diffeomorphism, by Proposition 3.29, we see

that ωi is a volume form on Ui. Then, if we apply Theorem 3.26, we can find a partition of
unity, {fi}, subordinate to the cover {Ui}, with the same index set. Let,

ω =
�

i

fiωi.

We claim that ω is a volume form on M .

It is clear that ω is an n-form on M . Now, since every p ∈ M belongs to some Ui, check
that on ϕi(Ui), we have

ϕ−1
i

∗
ω =

�

j∈finite set

ϕ−1
i

∗
(fjωj) =

�
�

j

(fj ◦ ϕ−1
i
)J(ϕj ◦ ϕ−1

i
)

�
ω0

and this sum is strictly positive because the Jacobian determinants are positive and as�
j
fj = 1 and fj ≥ 0, some term must be strictly positive. Therefore, ϕ−1

i

∗
ω is a volume
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form on ϕi(Ui) and so, ϕ∗
i
ϕ−1
i

∗
ω = ω is a volume form on Ui. As this holds for all Ui, we

conclude that ω is a volume form on M .

Since we showed that there is a volume form on the sphere, Sn, by Theorem 3.30, the
sphere Sn is orientable. It can be shown that the projective spaces, RPn, are non-orientable
iff n is even an thus, orientable iff n is odd. In particular, RP2 is not orientable. Also, even
though M may not be orientable, its tangent bundle, T (M), is always orientable! (Prove it).
It is also easy to show that if f : Rn+1 → R is a smooth submersion, then M = f−1(0) is a
smooth orientable manifold. Another nice fact is that every Lie group is orientable.

By Proposition 3.29 (b), given any two volume forms, ω1 and ω2 on a manifold, M , there
is a function, f : M → R, never 0 on M such that ω2 = fω1. This fact suggests the following
definition:

Definition 3.30 Given an orientable manifold, M , two volume forms, ω1 and ω2, on M are
equivalent iff ω2 = fω1 for some smooth function, f : M → R, such that f(p) > 0 for all
p ∈ M . An orientation of M is the choice of some equivalence class of volume forms on
M and an oriented manifold is a manifold together with a choice of orientation. If M is a
manifold oriented by the volume form, ω, for every p ∈ M , a basis, (b1, . . . , bn) of TpM is
posively oriented iff ωp(b1, . . . , bn) > 0, else it is negatively oriented (where n = dim(M)).

If M is an orientable manifold, for any two volume forms ω1 and ω2 on M , as ω2 = fω1

for some function, f , on M which is never zero, f has a constant sign on every connected
component of M . Consequently, a connected orientable manifold has two orientations.

We will also need the notion of orientation-preserving diffeomorphism.

Definition 3.31 Let ϕ : M → N be a diffeomorphism of oriented manifolds, M and N ,
of dimension n and say the orientation on M is given by the volume form ω1 while the
orientation on N is given by the volume form ω2. We say that ϕ is orientation preserving iff
ϕ∗ω2 determines the same orientation of M as ω1.

Using Definition 3.31 we can define the notion of a positive atlas.

Definition 3.32 IfM is a manifold oriented by the volume form, ω, an atlas forM is positive
iff for every chart, (U, ϕ), the diffeomorphism, ϕ : U → ϕ(U), is orientation preserving, where
U has the orientation induced by M and ϕ(U) ⊆ R

n has the orientation induced by the
standard orientation on R

n (with dim(M) = n).

The proof of Theorem 3.30 shows

Proposition 3.31 If a manifold, M , has an orientation altas, then there is a uniquely
determined orientation on M such that this atlas is positive.
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3.9 Covering Maps and Universal Covering Manifolds

Covering maps are an important technical tool in algebraic topology and more generally in
geometry. This brief section only gives some basic definitions and states a few major facts.
We apologize for his sketchy nature. Appendix A of O’Neill [119] gives a review of definitions
and main results about covering manifolds. Expositions including full details can be found
in Hatcher [71], Greenberg [65], Munkres [115], Fulton [56] and Massey [103, 104] (the most
extensive).

We begin with covering maps.

Definition 3.33 A map, π : M → N , between two smooth manifolds is a covering map (or
cover) iff

(1) The map π is smooth and surjective.

(2) For any q ∈ N , there is some open subset, V ⊆ N , so that q ∈ V and

π−1(V ) =
�

i∈I
Ui,

where the Ui are pairwise disjoint open subsets, Ui ⊆ M , and π : Ui → V is a diffeo-
morphism for every i ∈ I. We say that V is evenly covered .

The manifold, M , is called a covering manifold of N .

A homomorphism of coverings, π1 : M1 → N and π2 : M2 → N , is a smooth map,
ϕ : M1 → M2, so that

π1 = π2 ◦ ϕ,
that is, the following diagram commutes:

M1
ϕ ��

π1 ��

M2

π2��
N

.

We say that the coverings π1 : M1 → N and π2 : M2 → N are equivalent iff there is a
homomorphism, ϕ : M1 → M2, between the two coverings and ϕ is a diffeomorphism.

As usual, the inverse image, π−1(q), of any element q ∈ N is called the fibre over q, the
space N is called the base and M is called the covering space. As π is a covering map, each
fibre is a discrete space. Note that a homomorphism maps each fibre π−1

1 (q) in M1 to the
fibre π−1

2 (ϕ(q)) in M2, for every q ∈ M1.

Proposition 3.32 Let π : M → N be a covering map. If N is connected, then all fibres,
π−1(q), have the same cardinality for all q ∈ N . Furthermore, if π−1(q) is not finite then it
is countably infinite.
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Proof . Pick any point, p ∈ N . We claim that the set

S = {q ∈ N | |π−1(q)| = |π−1(p)|}
is open and closed.

If q ∈ S, then there is some open subset, V , with q ∈ V , so that π−1(V ) is evenly covered
by some family, {Ui}i∈I , of disjoint open subsets, Ui, each diffeomorphic to V under π. Then,
every s ∈ V must have a unique preimage in each Ui, so

|I| = |π−1(s)|, for all s ∈ V .

However, as q ∈ S, |π−1(q)| = |π−1(p)|, so
|I| = |π−1(p)| = |π−1(s)|, for all s ∈ V ,

and thus, V ⊆ S. Therefore, S is open. Similary the complement of S is open. As N is
connected, S = N .

Since M is a manifold, it is second-countable, that is every open subset can be written as
some countable union of open subsets. But then, every family, {Ui}i∈I , of pairwise disjoint
open subsets forming an even cover must be countable and since |I| is the common cardinality
of all the fibres, every fibre is countable.

When the common cardinality of fibres is finite it is called the multiplicity of the covering
(or the number of sheets).

For any integer, n > 0, the map, z �→ zn, from the unit circle S1 = U(1) to itself is a
covering with n sheets. The map,

t : �→ (cos(2πt), sin(2πt)),

is a covering, R → S1, with infinitely many sheets.

It is also useful to note that a covering map, π : M → N , is a local diffeomorphism (which
means that dπp : TpM → Tπ(p)N is a bijective linear map for every p ∈ M). Indeed, given
any p ∈ M , if q = π(p), then there is some open subset, V ⊆ N , containing q so that V is
evenly covered by a family of disjoint open subsets, {Ui}i∈I , with each Ui ⊆ M diffeomorphic
to V under π. As p ∈ Ui for some i, we have a diffeomorphism, π � Ui : Ui −→ V , as required.

The crucial property of covering manifolds is that curves in N can be lifted to M , in a
unique way. For any map, ϕ : P → N , a lift of ϕ through π is a map, �ϕ : P → M , so that

ϕ = π ◦ �ϕ,

as in the following commutative diagram:

M

π

��
P

�ϕ
��

ϕ
�� N

We state without proof the following results:
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Proposition 3.33 If π : M → N is a covering map, then for every smooth curve, α : I → N ,
in N (with 0 ∈ I) and for any point, q ∈ M , such that π(q) = α(0), there is a unique smooth
curve, �α : I → M , lifting α through π such that �α(0) = q.

Proposition 3.34 Let π : M → N be a covering map and let ϕ : P → N be a smooth map.
For any p0 ∈ P , any q0 ∈ M and any r0 ∈ N with π(q0) = ϕ(p0) = r0, the following
properties hold:

(1) If P is connected then there is at most one lift, �ϕ : P → M , of ϕ through π such that
�ϕ(p0) = q0.

(2) If P is simply connected, then such a lift exists.

M � q0

π

��
p0 ∈ P

�ϕ
��

ϕ
�� N � r0

Theorem 3.35 Every connected manifold, M , possesses a simply connected covering map,
π : �M → M , that is, with �M simply connected. Any two simply connected coverings of N
are equivalent.

In view of Theorem 3.35, it is legitimate to speak of the simply connected cover, �M , of
M , also called universal covering (or cover) of M .

Given any point, p ∈ M , let π1(M, p) denote the fundamental group of M with basepoint
p (see any of the references listed above, in particular, Massey [103, 104]). If ϕ : M → N
is a smooth map, for any p ∈ M , if we write q = ϕ(p), then we have an induced group
homomorphism

ϕ∗ : π1(M, p) → π1(N, q).

Proposition 3.36 If π : M → N is a covering map, for every p ∈ M , if q = π(p), then the
induced homomorphism, π∗ : π1(M, p) → π1(N, q), is injective.

The next proposition is a stronger version of part (2) of Proposition 3.34:

Proposition 3.37 Let π : M → N be a covering map and let ϕ : P → N be a smooth map.
For any p0 ∈ P , any q0 ∈ M and any r0 ∈ N with π(q0) = ϕ(p0) = r0, if P is connected,
then a lift, �ϕ : P → M , of ϕ such that �ϕ(p0) = q0 exists iff

ϕ∗(π1(P, p0)) ⊆ π∗(π1(M, q0)),

as illustrated in the diagram below
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M

π

��
P

�ϕ
��

ϕ
�� N iff

π1(M, q0)

π∗
��

π1(P, p0)

��

ϕ∗
�� π1(N, r0)

Basic Assumption: For any covering, π : M → N , if N is connected then we also
assume that M is connected.

Using Proposition 3.36, we get

Proposition 3.38 If π : M → N is a covering map and N is simply connected, then π is a
diffeomorphism (recall that M is connected); thus, M is diffeomorphic to the universal cover,
�N , of N .

Proof . Pick any p ∈ M and let q = ϕ(p). As N is simply connected, π1(N, q) = (0). By
Proposition 3.36, since π∗ : π1(M, p) → π1(N, q) is injective, π1(M, p) = (0) so M is simply
connected (by hypothesis, M is connected). But then, by Theorem 3.35, M and N are
diffeomorphic.

The following proposition shows that the universal covering of a space covers every other
covering of that space. This justifies the terminology “universal covering”.

Proposition 3.39 Say π1 : M1 → N and π2 : M2 → N are two coverings of N , with N
connected. Every homomorphism, ϕ : M1 → M2, between these two coverings is a covering
map. As a consequence, if π : �N → N is a universal covering of N , then for every covering,
π� : M → N , of N , there is a covering, ϕ : �N → M , of M .

The notion of deck-transformation group of a covering is also useful because it yields a
way to compute the fundamental group of the base space.

Definition 3.34 If π : M → N is a covering map, a deck-transformation is any diffeomor-
phism, ϕ : M → M , such that π = π ◦ ϕ, that is, the following diagram commutes:

M
ϕ ��

π
��

M

π
��

N

.

Note that deck-transformations are just automorphisms of the covering map. The com-
mutative diagram of Definition 3.34 means that a deck transformation permutes every fibre.
It is immediately verified that the set of deck transformations of a covering map is a group
denoted Γπ (or simply, Γ), called the deck-transformation group of the covering.

Observe that any deck transformation, ϕ, is a lift of π through π. Consequently, if M is
connected, by Proposition 3.34 (1), every deck-transformation is determined by its value at
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a single point. So, the deck-transformations are determined by their action on each point of
any fixed fibre, π−1(q), with q ∈ N . Since the fibre π−1(q) is countable, Γ is also countable,
that is, a discrete Lie group. Moreover, if M is compact, as each fibre, π−1(q), is compact
and discrete, it must be finite and so, the deck-transformation group is also finite.

The following proposition gives a useful method for determining the fundamental group
of a manifold.

Proposition 3.40 If π : �M → M is the universal covering of a connected manifold, M ,
then the deck-transformation group, �Γ, is isomorphic to the fundamental group, π1(M), of
M .

Remark: When π : �M → M is the universal covering of M , it can be shown that the group
�Γ acts simply and transitively on every fibre, π−1(q). This means that for any two elements,
x, y ∈ π−1(q), there is a unique deck-transformation, ϕ ∈ �Γ such that ϕ(x) = y. So, there is
a bijection between π1(M) ∼= �Γ and the fibre π−1(q).

Proposition 3.35 together with previous observations implies that if the universal cover
of a connected (compact) manifold is compact, then M has a finite fundamental group. We
will use this fact later, in particular, in the proof of Myers’ Theorem.
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Chapter 4

Construction of Manifolds From
Gluing Data

4.1 Sets of Gluing Data for Manifolds

The definition of a manifold given in Chapter 3 assumes that the underlying set, M , is
already known. However, there are situations where we only have some indirect information
about the overlap of the domains, Ui, of the local charts defining our manifold, M , in terms
of the transition functions,

ϕji : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj),

but where M itself is not known. For example, this situation happens when trying to
construct a surface approximating a 3D-mesh. If we let Ωij = ϕi(Ui ∩ Uj) and Ωji =
ϕj(Ui ∩ Uj), then ϕji can be viewed as a “gluing map”,

ϕji : Ωij → Ωji,

between two open subets of Ωi and Ωj, respectively.

For technical reasons, it is desirable to assume that the images, Ωi = ϕi(Ui) and Ωj =
ϕj(Uj), of distinct charts are disjoint but this can always be achieved for manifolds. Indeed,
the map

β : (x1, . . . , xn) �→
�

x1�
1 +

�
n

i=1 x
2
i

, . . . ,
xn�

1 +
�

n

i=1 x
2
i

�

is a smooth diffeomorphism from R
n to the open unit ball B(0, 1) with inverse given by

β−1 : (x1, . . . , xn) �→
�

x1�
1−

�
n

i=1 x
2
i

, . . . ,
xn�

1−
�

n

i=1 x
2
i

�
.

Since M has a countable basis, using compositions of β with suitable translations, we can
make sure that the Ωi’s are mapped diffeomorphically to disjoint open subsets of Rn.

173
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Remarkably, manifolds can be constructed using the “gluing process” alluded to above
from what is often called sets of “gluing data.” In this chapter, we are going to describe this
construction and prove its correctness in details, provided some mild assumptions on the
gluing data. It turns out that this procedure for building manifolds can be made practical.
Indeed, it is the basis of a class of new methods for approximating 3D meshes by smooth
surfaces, see Siqueira, Xu and Gallier [140].

It turns out that care must be exercised to ensure that the space obtained by gluing
the pieces Ωij and Ωji is Hausdorff. Some care must also be exercised in formulating the
consistency conditions relating the ϕji’s (the so-called “cocycle condition”). This is because
the traditional condition (for example, in bundle theory) has to do with triple overlaps
of the Ui = ϕ−1

i
(Ωi) on the manifold, M , (see Chapter 7, especially Theorem 7.4) but in

our situation, we do not have M nor the parametrization maps θi = ϕ−1
i

and the cocycle
condition on the ϕji’s has to be stated in terms of the Ωi’s and the Ωji’s.

Finding an easily testable necessary and sufficient criterion for the Hausdorff condition
appears to be a very difficult problem. We propose a necessary and sufficient condition, but
it is not easily testable in general. If M is a manifold, then observe that difficulties may arise
when we want to separate two distinct point, p, q ∈ M , such that p and q neither belong
to the same open, θi(Ωi), nor to two disjoint opens, θi(Ωi) and θj(Ωj), but instead, to the
boundary points in (∂(θi(Ωij)) ∩ θi(Ωi)) ∪ (∂(θj(Ωji)) ∩ θj(Ωj)). In this case, there are some
disjoint open subsets, Up and Uq, of M with p ∈ Up and q ∈ Uq, and we get two disjoint open
subsets, Vx = θ−1

i
(Up) ⊆ Ωi and Vy = θ−1

j
(Uq) ⊆ Ωj, with θi(x) = p, θj(y) = q, and such

that x ∈ ∂(Ωij) ∩ Ωi, y ∈ ∂(Ωji) ∩ Ωj, and no point in Vy ∩ Ωji is the image of any point in
Vx ∩ Ωij by ϕji. Since Vx and Vy are open, we may assume that they are open balls. This
necessary condition turns out to be also sufficient.

With the above motivations in mind, here is the definition of sets of gluing data.

Definition 4.1 Let n be an integer with n ≥ 1 and let k be either an integer with k ≥ 1 or
k = ∞. A set of gluing data is a triple, G = ((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K), satisfying the
following properties, where I is a (nonempty) countable set:

(1) For every i ∈ I, the set Ωi is a nonempty open subset of Rn called a parametrization
domain, for short, p-domain, and the Ωi are pairwise disjoint (i.e., Ωi ∩ Ωj = ∅ for all
i �= j).

(2) For every pair (i, j) ∈ I× I, the set Ωij is an open subset of Ωi. Furthermore, Ωii = Ωi

and Ωij �= ∅ iff Ωji �= ∅. Each nonempty Ωij (with i �= j) is called a gluing domain.

(3) If we let
K = {(i, j) ∈ I × I | Ωij �= ∅},

then ϕji : Ωij → Ωji is a Ck bijection for every (i, j) ∈ K called a transition function
(or gluing function) and the following condition holds:
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(c) For all i, j, k, if Ωji ∩ Ωjk �= ∅, then ϕ−1
ji
(Ωji ∩ Ωjk) ⊆ Ωik and

ϕki(x) = ϕkj ◦ ϕji(x), for all x ∈ ϕ−1
ji
(Ωji ∩ Ωjk).

Condition (c) is called the cocycle condition.

(4) For every pair (i, j) ∈ K, with i �= j, for every x ∈ ∂(Ωij)∩Ωi and every y ∈ ∂(Ωji)∩Ωj,
there are open balls, Vx and Vy centered at x and y, so that no point of Vy ∩Ωji is the
image of any point of Vx ∩ Ωij by ϕji.

Remarks.

(1) In practical applications, the index set, I, is of course finite and the open subsets, Ωi,
may have special properties (for example, connected; open simplicies, etc.).

(2) We are only interested in the Ωij’s that are nonempty but empty Ωij’s do arise in proofs
and constructions and this is why our definition allows them.

(3) Observe that Ωij ⊆ Ωi and Ωji ⊆ Ωj. If i �= j, as Ωi and Ωj are disjoint, so are Ωij and
Ωij.

(4) The cocycle condition (c) may seem overly complicated but it is actually needed to
guarantee the transitivity of the relation, ∼, defined in the proof of Proposition 4.1.
Flawed versions of condition (c) appear in the literature, see the discussion after the
proof of Proposition 4.1. The problem is that ϕkj ◦ ϕji is a partial function whose
domain, ϕ−1

ji
(Ωji∩Ωjk), is not necessarily related to the domain, Ωik, of ϕki. To ensure

the transitivity of ∼, we must assert that whenever the composition ϕkj ◦ ϕji has a
nonempty domain, this domain is contained in the domain of ϕki and that ϕkj ◦ϕji and
ϕki agree. Since the ϕji are bijections, condition (c) implies the following conditions:

(a) ϕii = idΩi , for all i ∈ I.

(b) ϕij = ϕ−1
ji
, for all (i, j) ∈ K.

To get (a), set i = j = k. Then, (b) follows from (a) and (c) by setting k = i.

(5) If M is a Ck manifold (including k = ∞), then using the notation of our introduction,
it is easy to check that the open sets Ωi, Ωij and the gluing functions, ϕji, satisfy
the conditions of Definition 4.1 (provided that we fix the charts so that the images
of distinct charts are disjoint). Proposition 4.1 will show that a manifold can be
reconstructed from a set of guing data.

The idea of defining gluing data for manifolds is not new. André Weil introduced this
idea to define abstract algebraic varieties by gluing irreducible affine sets in his book [148]
published in 1946. The same idea is well-known in bundle theory and can be found in
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standard texts such as Steenrod [141], Bott and Tu [19], Morita [114] and Wells [150] (the
construction of a fibre bundle from a cocycle is given in Chapter 7, see Theorem 7.4).

The beauty of the idea is that it allows the reconstruction of a manifold, M , without
having prior knowledge of the topology of this manifold (that is, without having explicitly
the underlying topological space M) by gluing open subets of Rn (the Ωi’s) according to
prescribed gluing instructions (namely, glue Ωi and Ωj by identifying Ωij and Ωji using ϕji).
This method of specifying a manifold separates clearly the local structure of the manifold
(given by the Ωi’s) from its global structure which is specified by the gluing functions.
Furthermore, this method ensures that the resulting manifold is Ck (even for k = ∞) with
no extra effort since the gluing functions ϕji are assumed to be Ck.

Grimm and Hughes [67, 68] appear to be the first to have realized the power of this latter
property for practical applications and we wish to emphasize that this is a very significant
discovery. However, Grimm [67] uses a condition stronger than our condition (4) to ensure
that the resulting space is Hausdorff. The cocycle condition in Grimm and Hughes [67, 68]
is also not strong enough to ensure transitivity of the relation ∼. We will come back to these
points after the proof of Proposition 4.1.

Working with overlaps of open subsets of the parameter domain makes it much easier to
enforce smoothness conditions compared to the traditional approach with splines where the
parameter domain is subdivided into closed regions and where enforcing smoothness along
boundaries is much more difficult.

Let us show that a set of gluing data defines a Ck manifold in a natural way.

Proposition 4.1 For every set of gluing data, G = ((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K), there
is an n-dimensional Ck manifold, MG, whose transition functions are the ϕji’s.

Proof . Define the binary relation, ∼, on the disjoint union,
�

i∈I Ωi, of the open sets, Ωi, as
follows: For all x, y ∈

�
i∈I Ωi,

x ∼ y iff (∃(i, j) ∈ K)(x ∈ Ωij, y ∈ Ωji, y = ϕji(x)).

Note that if x ∼ y and x �= y, then i �= j, as ϕii = id. But then, as x ∈ Ωij ⊆ Ωi,
y ∈ Ωji ⊆ Ωj and Ωi ∩ Ωj = ∅ when i �= j, if x ∼ y and x, y ∈ Ωi, then x = y.

We claim that ∼ is an equivalence relation. This follows easily from the cocycle condition
but to be on the safe side, we provide the crucial step of the proof. Clearly, condition
(a) ensures reflexivity and condition (b) ensures symmetry. The crucial step is to check
transitivity. Assume that x ∼ y and y ∼ z. Then, there are some i, j, k such that

(i) x ∈ Ωij, y ∈ Ωji ∩ Ωjk, z ∈ Ωkj and

(ii) y = ϕji(x) and z = ϕkj(y).
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Consequently, Ωji∩Ωjk �= ∅ and x ∈ ϕ−1
ji
(Ωji∩Ωjk), so by (c), we get ϕ−1

ji
(Ωji∩Ωjk) ⊆ Ωik

and thus, ϕki(x) is defined and by (c) again,

ϕki(x) = ϕkj ◦ ϕji(x) = z,

that is, x ∼ z, as desired.

Since ∼ is an equivalence relation let

MG =
��

i∈I
Ωi

�
/ ∼

be the quotient set and let p :
�

i∈I Ωi → MG be the quotient map, with p(x) = [x], where
[x] denotes the equivalence class of x. Also, for every i ∈ I, let ini : Ωi →

�
i∈I Ωi be the

natural injection and let
τi = p ◦ ini : Ωi → MG.

Since we already noted that if x ∼ y and x, y ∈ Ωi, then x = y, we conclude that every τi is
injective.

We give MG the coarsest topology that makes the bijections, τi : Ωi → τi(Ωi), into home-
omorphisms. Then, if we let Ui = τi(Ωi) and ϕi = τ−1

i
, it is immediately verified that

the (Ui, ϕi) are charts and this collection of charts forms a Ck atlas for MG. As there are
countably many charts, MG is second-countable. Therefore, for MG to be a manifold it only
remains to check that the topology is Hausdorff. For this, we use the following:

Claim. For all (i, j) ∈ I × I, we have τi(Ωi) ∩ τj(Ωj) �= ∅ iff (i, j) ∈ K and if so,

τi(Ωi) ∩ τj(Ωj) = τi(Ωij) = τj(Ωji).

Proof of Claim. Assume that τi(Ωi) ∩ τj(Ωj) �= ∅ and let [z] ∈ τi(Ωi) ∩ τj(Ωj). Observe that
[z] ∈ τi(Ωi) ∩ τj(Ωj) iff z ∼ x and z ∼ y, for some x ∈ Ωi and some y ∈ Ωj. Consequently,
x ∼ y, which implies that (i, j) ∈ K, x ∈ Ωij and y ∈ Ωji.

We have [z] ∈ τi(Ωij) iff z ∼ x for some x ∈ Ωij. Then, either i = j and z = x or i �= j
and z ∈ Ωji, which shows that [z] ∈ τj(Ωji) and so,

τi(Ωij) ⊆ τj(Ωji).

Since the same argument applies by interchanging i and j, we have

τi(Ωij) = τj(Ωji),

for all (i, j) ∈ K. Since Ωij ⊆ Ωi, Ωji ⊆ Ωj and τi(Ωij) = τj(Ωji) for all (i, j) ∈ K, we have

τi(Ωij) = τj(Ωji) ⊆ τi(Ωi) ∩ τj(Ωj),

for all (i, j) ∈ K.



178 CHAPTER 4. CONSTRUCTION OF MANIFOLDS FROM GLUING DATA

For the reverse inclusion, if [z] ∈ τi(Ωi)∩ τj(Ωj), then we know that there is some x ∈ Ωij

and some y ∈ Ωji such that z ∼ x and z ∼ y, so [z] = [x] ∈ τi(Ωij), [z] = [y] ∈ τj(Ωji) and
we get

τi(Ωi) ∩ τj(Ωj) ⊆ τi(Ωij) = τj(Ωji).

This proves that if τi(Ωi) ∩ τj(Ωj) �= ∅, then (i, j) ∈ K and

τi(Ωi) ∩ τj(Ωj) = τi(Ωij) = τj(Ωji).

Finally, assume (i, j) ∈ K. Then, for any x ∈ Ωij ⊆ Ωi, we have y = ϕji(x) ∈ Ωji ⊆ Ωj

and x ∼ y, so that τi(x) = τj(y), which proves that τi(Ωi) ∩ τj(Ωj) �= ∅ and our claim is
proved.

We now prove that the topology of MG is Hausdorff. Pick [x], [y] ∈ MG with [x] �= [y],
for some x ∈ Ωi and some y ∈ Ωj. Either τi(Ωi)∩ τj(Ωj) = ∅, in which case, as τi and τj are
homeomorphisms, [x] and [y] belong to the two disjoint open sets τi(Ωi) and τj(Ωj). If not,
then by the Claim, (i, j) ∈ K and

τi(Ωi) ∩ τj(Ωj) = τi(Ωij) = τj(Ωji).

There are several cases to consider:

(a) If i = j, then x and y can be separated by disjoint opens, Vx and Vy, and as τi is
a homeomorphism, [x] and [y] are separated by the disjoint open subsets τi(Vx) and
τi(Vy).

(b) If i �= j, x ∈ Ωi −Ωij and y ∈ Ωj −Ωji, then τi(Ωi −Ωij) and τj(Ωj −Ωji) are disjoint
opens subsets separating [x] and [y].

(c) If i �= j, x ∈ Ωij and y ∈ Ωji, as [x] �= [y] and y ∼ ϕij(y), then x �= ϕij(y). We can
separate x and ϕij(y) by disjoint open subsets, Vx and Vy and [x] and [y] = [ϕij(y)] are
separated by the disjoint open subsets τi(Vx) and τi(Vy).

(d) If i �= j, x ∈ ∂(Ωij)∩Ωi and y ∈ ∂(Ωji)∩Ωj, then we use condition (4). This condition
yields two disjoint open subsets Vx and Vy with x ∈ Vx and y ∈ Vy such that no point
of Vx ∩Ωij is equivalent to any point of Vy ∩Ωji, and so, τi(Vx) and τj(Vy) are disjoint
open subsets separating [x] and [y].

Therefore, the topology of MG is Hausdorff and MG is indeed a manifold.

Finally, it is trivial to verify that the transition functions of MG are the original gluing
functions, ϕij.

It should be noted that as nice as it is, Proposition 4.1 is a theoretical construction that
yields an “abstract” manifold but does not yield any information as to the geometry of this
manifold. Furthermore, the resulting manifold may not be orientable or compact, even if we
start with a finite set of p-domains.
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Here is an example showing that if condition (4) of Definition 4.1 is omitted then we
may get non-Hausdorff spaces. Cindy Grimm uses a similar example in her dissertation [67]
(Appendix C2, page 126), but her presentation is somewhat confusing because her Ω1 and
Ω2 appear to be two disjoint copies of the real line in R

2, but these are not open in R
2!

Let Ω1 = (−3,−1), Ω2 = (1, 3), Ω12 = (−3,−2), Ω21 = (1, 2) and ϕ21(x) = x + 4. The
resulting space, M , is a curve looking like a “fork”, and the problem is that the images of
−2 and 2 in M , which are distinct points of M , cannot be separated. Indeed, the images of
any two open intervals (−2− �,−2+ �) and (2− η, 2+ η) (for �, η > 0) always intersect since
(−2−min(�, η),−2) and (2−min(�, η), 2) are identified. Clearly, condition (4) fails.

Cindy Grimm [67] (page 40) uses a condition stronger than our condition (4) to ensure
that the quotient, MG is Hausdorff, namely, that for all (i, j) ∈ K with i �= j, the quotient
(Ωi

�
Ωj)/ ∼ should be embeddable in R

n. This is a rather strong condition that prevents
obtaining a 2-sphere by gluing two open discs in R

2 along an annulus (see Grimm [67],
Appendix C2, page 126).

Grimm uses the following cocycle condition in [67] (page 40) and [68] (page 361):

(c’) For all x ∈ Ωij ∩ Ωik,
ϕki(x) = ϕkj ◦ ϕji(x).

This condition is not strong enough to imply transitivity of the relation ∼, as shown by the
following counter-example:

Let Ω1 = (0, 3), Ω2 = (4, 5), Ω3 = (6, 9), Ω12 = (0, 1), Ω13 = (2, 3), Ω21 = Ω23 = (4, 5),
Ω32 = (8, 9), Ω31 = (6, 7), ϕ21(x) = x+ 4, ϕ32(x) = x+ 4 and ϕ31(x) = x+ 4.

Note that the pairwise gluings yield Hausdorff spaces. Obviously, ϕ32 ◦ ϕ21(x) = x + 8,
for all x ∈ Ω12, but Ω12 ∩ Ω13 = ∅. Thus, 0.5 ∼ 4.5 ∼ 8.5, but 0.5 �∼ 8.5 since ϕ31(0.5) is
undefined.

Here is another counter-example in which Ω12 ∩Ω13 �= ∅, using a disconnected open, Ω2.

Let Ω1 = (0, 3), Ω2 = (4, 5) ∪ (6, 7), Ω3 = (8, 11), Ω12 = (0, 1) ∪ (2, 3), Ω13 = (2, 3),
Ω21 = Ω23 = (4, 5)∪ (6, 7), Ω32 = (8, 9)∪ (10, 11), Ω31 = (8, 9), ϕ21(x) = x+4, ϕ32(x) = x+2
on (6, 7), ϕ32(x) = x+ 6 on (4, 5), ϕ31(x) = x+ 6.

Note that the pairwise gluings yield Hausdorff spaces. Obviously, ϕ32 ◦ϕ21(x) = x+6 =
ϕ31(x) for all x ∈ Ω12 ∩ Ω13 = (2, 3). Thus, 0.5 ∼ 4.5 ∼ 8.5, but 0.5 �∼ 8.5 since ϕ31(0.5) is
undefined.

It is possible to give a construction, in the case of a surface, which builds a compact man-
ifold whose geometry is “close” to the geometry of a prescribed 3D-mesh (see Siqueira, Xu
and Gallier [140]). Actually, we are not able to guarantee, in general, that the parametriza-
tion functions, θi, that we obtain are injective, but we are not aware of any algorithm that
achieves this.
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Given a set of gluing data, G = ((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K), it is natural to consider
the collection of manifolds, M , parametrized by maps, θi : Ωi → M , whose domains are the
Ωi’s and whose transitions functions are given by the ϕji, that is, such that

ϕji = θ−1
j

◦ θi.

We will say that such manifolds are induced by the set of gluing data, G.
The proof of Proposition 4.1 shows that the parametrization maps, τi, satisfy the prop-

erty: τi(Ωi) ∩ τj(Ωj) �= ∅ iff (i, j) ∈ K and if so,

τi(Ωi) ∩ τj(Ωj) = τi(Ωij) = τj(Ωji).

Furthermore, they also satisfy the consistency condition:

τi = τj ◦ ϕji,

for all (i, j) ∈ K. If M is a manifold induced by the set of gluing data, G, because the θi’s
are injective and ϕji = θ−1

j
◦ θi, the two properties stated above for the τi’s also hold for the

θi’s. We will see in Section 4.2 that the manifold, MG, is a “universal” manifold induced by
G in the sense that every manifold induced by G is the image of MG by some Ck map.

Interestingly, it is possible to characterize when two manifolds induced by the same set
of gluing data are isomorphic in terms of a condition on their transition functions.

Proposition 4.2 Given any set of gluing data, G = ((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K), for
any two manifolds M and M � induced by G given by families of parametrizations (Ωi, θi)i∈I
and (Ωi, θ�i)i∈I , respectively, if f : M → M � is a Ck isomorphism, then there are Ck bijections,
ρi : Wij → W �

ij
, for some open subsets Wij,W �

ij
⊆ Ωi, such that

ϕ�
ji
(x) = ρj ◦ ϕji ◦ ρ−1

i
(x), for all x ∈ Wij,

with ϕji = θ−1
j

◦θi and ϕ�
ji
= θ�−1

j
◦θ�

i
. Furthermore, ρi = (θ�

i

−1◦f ◦θi) � Wij and if θ�
i

−1◦f ◦θi
is a bijection from Ωi to itself and θ�

i

−1 ◦ f ◦ θi(Ωij) = Ωij, for all i, j, then Wij = W �
i,j

= Ωi.

Proof . The composition θ�
i

−1 ◦ f ◦ θi is actually a partial function with domain

dom(θ�
i

−1 ◦ f ◦ θi) = {x ∈ Ωi | θi(x) ∈ f−1 ◦ θ�
i
(Ωi)}

and its “inverse” θ−1
i

◦ f−1 ◦ θ�
i
is a partial function with domain

dom(θ−1
i

◦ f−1 ◦ θ�
i
) = {x ∈ Ωi | θ�i(x) ∈ f ◦ θi(Ωi)}.

The composition θ�
j

−1 ◦ f ◦ θj ◦ ϕji ◦ θ−1
i

◦ f−1 ◦ θ�
i
is also a partial function and we let

Wij = Ωij ∩ dom(θ�
j

−1 ◦ f ◦ θj ◦ ϕji ◦ θ−1
i

◦ f−1 ◦ θ�
i
), ρi = (θ�

i

−1 ◦ f ◦ θi) � Wij
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and W �
ij
= ρi(Wij). Observe that θj ◦ ϕji = θj ◦ θ−1

j
◦ θi = θi, that is,

θi = θj ◦ ϕji.

Using this, on Wij, we get

ρj ◦ ϕji ◦ ρ−1
i

= θ�
j

−1 ◦ f ◦ θj ◦ ϕji ◦ (θ�i
−1 ◦ f ◦ θi)−1

= θ�
j

−1 ◦ f ◦ θj ◦ ϕji ◦ θ−1
i

◦ f−1 ◦ θ�
i

= θ�
j

−1 ◦ f ◦ θi ◦ θ−1
i

◦ f−1 ◦ θ�
i

= θ�
j

−1 ◦ θ�
i
= ϕ�

ji
,

as claimed. The last part of the proposition is clear.

Proposition 4.2 suggests defining a notion of equivalence on sets of gluing data which
yields a converse of this proposition.

Definition 4.2 Two sets of gluing data, G = ((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K) and G � =
((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕ�

ji
)(i,j)∈K), over the same sets of Ωi’s and Ωij’s are equivalent iff there

is a family of Ck bijections, (ρi : Ωi → Ωi)i∈I , such that ρi(Ωij) = Ωij and

ϕ�
ji
(x) = ρj ◦ ϕji ◦ ρ−1

i
(x), for all x ∈ Ωij,

for all i, j.

Here is the converse of Proposition 4.2. It is actually nicer than Proposition 4.2 because
we can take Wij = W �

ij
= Ωi.

Proposition 4.3 If two sets of gluing data G = ((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K) and G � =
((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕ�

ji
)(i,j)∈K) are equivalent, then there is a Ck isomorphism, f : MG →

MG�, between the manifolds induced by G and G �. Furthermore, f ◦ τi = τ �
i
◦ ρi, for all i ∈ I.

Proof . Let fi : τi(Ωi) → τ �
i
(Ωi) be the Ck bijection given by

fi = τ �
i
◦ ρi ◦ τ−1

i
,

where the ρi : Ωi → Ωi’s are the maps giving the equivalence of G and G �. If we prove that fi
and fj agree on the overlap, τi(Ωi) ∩ τj(Ωj) = τi(Ωij) = τj(Ωji), then the fi patch and yield
a Ck isomorphism, f : MG → MG� . The conditions of Proposition 4.3 imply that

ϕ�
ji
◦ ρi = ρj ◦ ϕji

and we know that
τ �
i
= τ �

j
◦ ϕ�

ji
.
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Consequently, for every [x] ∈ τj(Ωji) = τi(Ωij), with x ∈ Ωij, we have

fj([x]) = τ �
j
◦ ρj ◦ τ−1

j
([x])

= τ �
j
◦ ρj ◦ τ−1

j
([ϕji(x)])

= τ �
j
◦ ρj ◦ ϕji(x)

= τ �
j
◦ ϕ�

ji
◦ ρi(x)

= τ �
i
◦ ρi(x)

= τ �
i
◦ ρi ◦ τ−1

i
([x])

= fi([x]),

which shows that fi and fj agree on τi(Ωi) ∩ τj(Ωj), as claimed.

In the next section, we describe a class of spaces that can be defined by gluing data
and parametrization functions, θi, that are not necessarily injective. Roughly speaking,
the gluing data specify the topology and the parametrizations define the geometry of the
space. Such spaces have more structure than spaces defined parametrically but they are
not quite manifolds. Yet, they arise naturally in practice and they are the basis of efficient
implementations of very good approximations of 3D meshes.

4.2 Parametric Pseudo-Manifolds

In practice, it is often desirable to specify some n-dimensional geometric shape as a subset of
R

d (usually for d = 3) in terms of parametrizations which are functions, θi, from some subset
of Rn into R

d (usually, n = 2). For “open” shapes, this is reasonably well understood but
dealing with a “closed” shape is a lot more difficult because the parametrized pieces should
overlap as smoothly as possible and this is hard to achieve. Furthermore, in practice, the
parametrization functions, θi, may not be injective. Proposition 4.1 suggests various ways
of defining such geometric shapes. For the lack of a better term, we will call these shapes,
parametric pseudo-manifolds .

Definition 4.3 Let n, k, d be three integers with d > n ≥ 1 and k ≥ 1 or k = ∞. A
parametric Ck pseudo-manifold of dimension n in R

d is a pair, M = (G, (θi)i∈I), where
G = ((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K) is a set of gluing data for some finite set, I, and each
θi is a Ck function, θi : Ωi → R

d, called a parametrization such that the following property
holds:

(C) For all (i, j) ∈ K, we have
θi = θj ◦ ϕji.

For short, we use terminology parametric pseudo-manifold . The subset, M ⊆ R
d, given by

M =
�

i∈I
θi(Ωi)
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is called the image of the parametric pseudo-manifold, M. When n = 2 and d = 3, we say
that M is a parametric pseudo-surface.

Condition (C) obviously implies that

θi(Ωij) = θj(Ωji),

for all (i, j) ∈ K. Consequently, θi and θj are consistent parametrizations of the overlap,
θi(Ωij) = θj(Ωji). Thus, the shape, M , is covered by pieces, Ui = θi(Ωi), not necessarily open,
with each Ui parametrized by θi and where the overlapping pieces, Ui∩Uj, are parametrized
consistently. The local structure of M is given by the θi’s and the global structure is given
by the gluing data. We recover a manifold if we require the θi to be bijective and to satisfy
the following additional conditions:

(C’) For all (i, j) ∈ K,

θi(Ωi) ∩ θj(Ωj) = θi(Ωij) = θj(Ωji).

(C”) For all (i, j) /∈ K,

θi(Ωi) ∩ θj(Ωj) = ∅.

Even if the θi’s are not injective, properties (C’) and (C”) would be desirable since they
guarantee that θi(Ωi−Ωij) and θj(Ωj−Ωji) are parametrized uniquely. Unfortunately, these
properties are difficult to enforce. Observe that any manifold induced by G is the image of
a parametric pseudo-manifold.

Although this is an abuse of language, it is more convenient to call M a parametric
pseudo-manifold, or even a pseudo-manifold .

We can also show that the parametric pseudo-manifold, M , is the image in R
d of the

abstract manifold, MG.

Proposition 4.4 Let M = (G, (θi)i∈I) be parametric Ck pseudo-manifold of dimension n in
R

d, where G = ((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K) is a set of gluing data for some finite set, I.
Then, the parametrization maps, θi, induce a surjective map, Θ: MG → M , from the abstract
manifold, MG, specified by G to the image, M ⊆ R

d, of the parametric pseudo-manifold, M,
and the following property holds: For every Ωi,

θi = Θ ◦ τi,

where the τi : Ωi → MG are the parametrization maps of the manifold MG (see Proposition
4.1). In particular, every manifold, M , induced by the gluing data G is the image of MG by
a map Θ: MG → M .
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Proof . Recall that

MG =
��

i∈I
Ωi

�
/ ∼,

where ∼ is the equivalence relation defined so that, for all x, y ∈
�

i∈I Ωi,

x ∼ y iff (∃(i, j) ∈ K)(x ∈ Ωij, y ∈ Ωji, y = ϕji(x)).

The proof of Proposition 4.1 also showed that τi(Ωi) ∩ τj(Ωj) �= ∅ iff (i, j) ∈ K and if so,

τi(Ωi) ∩ τj(Ωj) = τi(Ωij) = τj(Ωji).

In particular,
τi(Ωi − Ωij) ∩ τj(Ωj − Ωji) = ∅

for all (i, j) ∈ I × I (Ωij = Ωji = ∅ when (i, j) /∈ K). These properties with the fact
that the τi’s are injections show that for all (i, j) /∈ K, we can define Θi : τi(Ωi) → R

d and
Θj : τi(Ωj) → R

d by

Θi([x]) = θi(x), x ∈ Ωi Θj([y]) = θj(y), y ∈ Ωj.

For (i, j) ∈ K, as the the τi’s are injections we can define Θi : τi(Ωi − Ωij) → R
d and

Θj : τi(Ωj − Ωji) → R
d by

Θi([x]) = θi(x), x ∈ Ωi − Ωij Θj([y]) = θj(y), y ∈ Ωj − Ωji.

It remains to define Θi on τi(Ωij) and Θj on τj(Ωji) in such a way that they agree on
τi(Ωij) = τj(Ωji). However, condition (C) in Definition 4.3 says that for all x ∈ Ωij,

θi(x) = θj(ϕji(x)).

Consequently, if we define Θi on τi(Ωij) and Θj on τj(Ωji) by

Θi([x]) = θi(x), x ∈ Ωij, Θj([y]) = θj(y), y ∈ Ωji,

as x ∼ ϕji(x), we have

Θi([x]) = θi(x) = θj(ϕji(x)) = Θj([ϕji(x)]) = Θj([x]),

which means that Θi and Θj agree on τi(Ωij) = τj(Ωji). But then, the functions, Θi, agree
whenever their domains overlap and so, they patch to yield a function, Θ, with domain MG
and image M . By construction, θi = Θ ◦ τi and as a manifold induced by G is a parametric
pseudo-manifold, the last statement is obvious.

The function, Θ: MG → M , given by Proposition 4.4 shows how the parametric pseudo-
manifold, M , differs from the abstract manifold, MG. As we said before, a practical method
for approximating 3D meshes based on parametric pseudo surfaces is described in Siqueira,
Xu and Gallier [140].



Chapter 5

Lie Groups, Lie Algebras and the
Exponential Map

5.1 Lie Groups and Lie Algebras

In Chapter 1 we defined the notion of a Lie group as a certain type of manifold embedded in
R

N , for some N ≥ 1. Now that we have the general concept of a manifold, we can define Lie
groups in more generality. Besides classic references on Lie groups and Lie Algebras, such
as Chevalley [34], Knapp [89], Warner [147], Duistermaat and Kolk [53], Bröcker and tom
Dieck [25], Sagle and Walde [129], Helgason [73], Serre [137, 136], Kirillov [86], Fulton and
Harris [57] and Bourbaki [22], one should be aware of more introductory sources and surveys
such as Hall [70], Sattinger and Weaver [134], Carter, Segal and Macdonald [31], Curtis [38],
Baker [13], Rossmann [127], Bryant [26], Mneimné and Testard [111] and Arvanitoyeogos [8].

Definition 5.1 A Lie group is a nonempty subset, G, satisfying the following conditions:

(a) G is a group (with identity element denoted e or 1).

(b) G is a smooth manifold.

(c) G is a topological group. In particular, the group operation, · : G × G → G, and the
inverse map, −1 : G → G, are smooth.

We have already met a number of Lie groups: GL(n,R), GL(n,C), SL(n,R), SL(n,C),
O(n), SO(n), U(n), SU(n), E(n,R). Also, every linear Lie group (i.e., a closed subgroup
of GL(n,R)) is a Lie group.

We saw in the case of linear Lie groups that the tangent space to G at the identity,
g = T1G, plays a very important role. In particular, this vector space is equipped with a
(non-associative) multiplication operation, the Lie bracket, that makes g into a Lie algebra.
This is again true in this more general setting.

Recall that Lie algebras are defined as follows:

185
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Definition 5.2 A (real) Lie algebra, A, is a real vector space together with a bilinear map,
[·, ·] : A×A → A, called the Lie bracket on A such that the following two identities hold for
all a, b, c ∈ A:

[a, a] = 0,

and the so-called Jacobi identity

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0.

It is immediately verified that [b, a] = −[a, b].

Let us also recall the definition of homomorphisms of Lie groups and Lie algebras.

Definition 5.3 Given two Lie groups G1 and G2, a homomorphism (or map) of Lie groups
is a function, f : G1 → G2, that is a homomorphism of groups and a smooth map (between
the manifolds G1 and G2). Given two Lie algebras A1 and A2, a homomorphism (or map)
of Lie algebras is a function, f : A1 → A2, that is a linear map between the vector spaces
A1 and A2 and that preserves Lie brackets, i.e.,

f([A,B]) = [f(A), f(B)]

for all A,B ∈ A1.

An isomorphism of Lie groups is a bijective function f such that both f and f−1 are
maps of Lie groups, and an isomorphism of Lie algebras is a bijective function f such that
both f and f−1 are maps of Lie algebras.

The Lie bracket operation on g can be defined in terms of the so-called adjoint represen-
tation.

Given a Lie group G, for every a ∈ G we define left translation as the map, La : G → G,
such that La(b) = ab, for all b ∈ G, and right translation as the map, Ra : G → G, such
that Ra(b) = ba, for all b ∈ G. Because multiplication and the inverse maps are smooth,
the maps La and Ra are diffeomorphisms, and their derivatives play an important role. The
inner automorphisms Ra−1 ◦ La (also written Ra−1La or Ada) also play an important role.
Note that

Ra−1La(b) = aba−1.

The derivative
d(Ra−1La)1 : T1G → T1G

of Ra−1La : G → G at 1 is an isomorphism of Lie algebras, and since T1G = g, we get a map
denoted

Ada : g → g.

The map a �→ Ada is a map of Lie groups

Ad: G → GL(g),
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called the adjoint representation of G (where GL(g) denotes the Lie group of all bijective
linear maps on g).

In the case of a linear group, one can verify that

Ad(a)(X) = Ada(X) = aXa−1

for all a ∈ G and all X ∈ g.
The derivative

dAd1 : g → gl(g)

of Ad: G → GL(g) at 1 is map of Lie algebras, denoted by

ad: g → gl(g),

called the adjoint representation of g. (Recall that Theorem 1.28 immediately implies that
the Lie algebra, gl(g), of GL(g) is the vector space, End(g, g), of all endomorphisms of g,
that is, the vector space of all linear maps on g).

In the case of a linear group, it can be verified that

ad(A)(B) = [A, B] = AB − BA,

for all A,B ∈ g.

One can also check (in general) that the Jacobi identity on g is equivalent to the fact
that ad preserves Lie brackets, i.e., ad is a map of Lie algebras:

ad([u, v]) = [ad(u), ad(v)],

for all u, v ∈ g (where on the right, the Lie bracket is the commutator of linear maps on g).

This is the key to the definition of the Lie bracket in the case of a general Lie group (not
just a linear Lie group).

Definition 5.4 Given a Lie group, G, the tangent space, g = T1G, at the identity with the
Lie bracket defined by

[u, v] = ad(u)(v), for all u, v ∈ g,

is the Lie algebra of the Lie group G.

Actually, we have to justify why g really is a Lie algebra. For this, we have

Proposition 5.1 Given a Lie group, G, the Lie bracket, [u, v] = ad(u)(v), of Definition 5.4
satisfies the axioms of a Lie algebra (given in Definition 5.2). Therefore, g with this bracket
is a Lie algebra.
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Proof . The proof requires Proposition 5.9, but we prefer to defer the proof of this Proposition
until section 5.3. Since

Ad: G → GL(g)

is a Lie group homomorphism, by Proposition 5.9, the map ad = dAd1 is a homomorphism
of Lie algebras, ad: g → gl(g), which means that

ad([u, v]) = ad(u) ◦ ad(v)− ad(v) ◦ ad(u), for all u, v ∈ g,

since the bracket in gl(g) = End(g, g), is just the commutator. Applying the above to
w ∈ g, we get the Jacobi identity. We still have to prove that [u, u] = 0, or equivalently,
that [v, u] = −[u, v]. For this, following Duistermaat and Kolk [53] (Chapter 1, Section 1),
consider the map

G×G −→ G : (a, b) �→ aba−1b−1.

It is easy to see that its differential at (1, 1) is the zero map. We can then compute the
differential w.r.t. b at b = 1 and evaluate at v ∈ g, getting (Ada − id)(v). Then, the second
derivative w.r.t. a at a = 1 evaluated at u ∈ g is [u, v]. On the other hand if we differentiate
first w.r.t. a and then w.r.t. b, we first get (id − Adb)(u) and then −[v, u]. As our original
map is smooth, the second derivative is bilinear symmetric, so [u, v] = −[v, u].

Remark: After proving that g is isomorphic to the vector space of left-invariant vector fields
on G, we get another proof of Proposition 5.1.

5.2 Left and Right Invariant Vector Fields, the Expo-
nential Map

A fairly convenient way to define the exponential map is to use left-invariant vector fields.

Definition 5.5 If G is a Lie group, a vector field, X, on G is left-invariant (resp. right-
invariant) iff

d(La)b(X(b)) = X(La(b)) = X(ab), for all a, b ∈ G.

(resp.
d(Ra)b(X(b)) = X(Ra(b)) = X(ba), for all a, b ∈ G.)

Equivalently, a vector field, X, is left-invariant iff the following diagram commutes (and
similarly for a right-invariant vector field):

TG
d(La) �� TG

G
La

��

X

��

G

X

��
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If X is a left-invariant vector field, setting b = 1, we see that

X(a) = d(La)1(X(1)),

which shows that X is determined by its value, X(1) ∈ g, at the identity (and similarly for
right-invariant vector fields).

Conversely, given any v ∈ g, we can define the vector field, vL, by

vL(a) = d(La)1(v), for all a ∈ G.

We claim that vL is left-invariant. This follows by an easy application of the chain rule:

vL(ab) = d(Lab)1(v)

= d(La ◦ Lb)1(v)

= d(La)b(d(Lb)1(v))

= d(La)b(v
L(b)).

Furthermore, vL(1) = v. Therefore, we showed that the map, X �→ X(1), establishes an
isomorphism between the space of left-invariant vector fields on G and g. In fact, the map
G × g −→ TG given by (a, v) �→ vL(a) is an isomorphism between G × g and the tangent
bundle, TG.

Remark: Given any v ∈ g, we can also define the vector field, vR, by

vR(a) = d(Ra)1(v), for all a ∈ G.

It is easily shown that vR is right-invariant and we also have an isomorphism G× g −→ TG
given by (a, v) �→ vR(a).

Another reason why left-invariant (resp. right-invariant) vector fields on a Lie group are
important is that they are complete, i.e., they define a flow whose domain is R × G. To
prove this, we begin with the following easy proposition:

Proposition 5.2 Given a Lie group, G, if X is a left-invariant (resp. right-invariant)
vector field and Φ is its flow, then

Φ(t, g) = gΦ(t, 1) (resp. Φ(t, g) = Φ(t, 1)g), for all (t, g) ∈ D(X).

Proof . Write
γ(t) = gΦ(t, 1) = Lg(Φ(t, 1)).

Then, γ(0) = g and, by the chain rule

γ̇(t) = d(Lg)Φ(t,1)(Φ̇(t, 1)) = d(Lg)Φ(t,1)(X(Φ(t, 1))) = X(Lg(Φ(t, 1))) = X(γ(t)).

By the uniqueness of maximal integral curves, γ(t) = Φ(t, g) for all t, and so,

Φ(t, g) = gΦ(t, 1).

A similar argument applies to right-invariant vector fields.
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Proposition 5.3 Given a Lie group, G, for every v ∈ g, there is a unique smooth homo-
morphism, hv : (R,+) → G, such that ḣv(0) = v. Furthermore, hv(t) is the maximal integral
curve of both vL and vR with initial condition 1 and the flows of vL and vR are defined for
all t ∈ R.

Proof . Let Φv

t
(g) denote the flow of vL. As far as defined, we know that

Φv

s+t
(1) = Φv

s
(Φv

t
(1)) = Φv

t
(1)Φv

s
(1),

by Proposition 5.2. Now, if Φv

t
(1) is defined on ] − �, �[ , setting s = t, we see that Φv

t
(1) is

actually defined on ] − 2�, 2�[ . By induction, we see that Φv

t
(1) is defined on ] − 2n�, 2n�[ ,

for all n ≥ 0, and so, Φv

t
(1) is defined on R and the map t �→ Φv

t
(1) is a homomorphism,

hv : (R,+) → G, with ḣv(0) = v. Since Φv

t
(g) = gΦv

t
(1), the flow, Φv

t
(g), is defined for all

(t, g) ∈ R×G. A similar proof applies to vR. To show that hv is smooth, consider the map

R×G× g −→ G× g, where (t, g, v) �→ (gΦv

t
(1), v).

It is immediately seen that the above is the flow of the vector field

(g, v) �→ (v(g), 0),

and thus, it is smooth. Consequently, the restriction of this smooth map to R× {1} × {v},
which is just t �→ Φv

t
(1) = hv(t), is also smooth.

Assume h : (R,+) → G is a smooth homomorphism with ḣ(0) = v. From

h(t+ s) = h(t)h(s) = h(s)h(t),

if we differentiate with respect to s at s = 0, we get

dh

dt
(t) = d(Lh(t))1(v) = vL(h(t))

and
dh

dt
(t) = d(Rh(t))1(v) = vR(h(t)).

Therefore, h(t) is an integral curve for vL and vR with initial condition h(0) = 1 and
h = Φv

t
(1).

Since hv : (R,+) → G is a homomorphism, the integral curve, hv, if often referred to as
a one-parameter group. Proposition 5.3 yields the definition of the exponential map.

Definition 5.6 Given a Lie group, G, the exponential map, exp: g → G, is given by

exp(v) = hv(1) = Φv

1(1), for all v ∈ g.
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We can see that exp is smooth as follows. As in the proof of Proposition 5.3, we have
the smooth map

R×G× g −→ G× g, where (t, g, v) �→ (gΦv

t
(1), v),

which is the flow of the vector field

(g, v) �→ (v(g), 0).

Consequently, the restriction of this smooth map to {1} × {1} × g, which is just
v �→ Φv

1(1) = exp(v), is also smooth.

Observe that for any fixed t ∈ R, the map

s �→ hv(st)

is a smooth homomorphism, h, such that ḣ(0) = tv. By uniqueness, we have

hv(st) = htv(s).

Setting s = 1, we find that

hv(t) = exp(tv), for all v ∈ g and all t ∈ R.

Then, differentiating with respect to t at t = 0, we get

v = d exp0(v),

i.e., d exp0 = idg. By the inverse function theorem, exp is a local diffeomorphism at 0. This
means that there is some open subset, U ⊆ g, containing 0, such that the restriction of exp
to U is a diffeomorphism onto exp(U) ⊆ G, with 1 ∈ exp(U). In fact, by left-translation, the
map v �→ g exp(v) is a local diffeomorphism between some open subset, U ⊆ g, containing
0 and the open subset, exp(U), containing g. The exponential map is also natural in the
following sense:

Proposition 5.4 Given any two Lie groups, G and H, for every Lie group homomorphism,
f : G → H, the following diagram commutes:

G
f �� H

g
df1

��

exp

��

h

exp

��

Proof . Observe that the map h : t �→ f(exp(tv)) is a homomorphism from (R,+) to G such
that ḣ(0) = df1(v). Proposition 5.3 shows that f(exp(v)) = exp(df1(v)).

A useful corollary of Proposition 5.4 is:
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Proposition 5.5 Let G be a connected Lie group and H be any Lie group. For any two
homomorphisms, ϕ1 : G → H and ϕ2 : G → H, if d(ϕ1)1 = d(ϕ2)1, then ϕ1 = ϕ2.

Proof . We know that the exponential map is a diffeomorphism on some small open subset,
U , containing 0. Now, by Proposition 5.4, for all a ∈ exp

G
(U), we have

ϕi(a) = exp
H
(d(ϕi)1(exp

−1
G
(a))), i = 1, 2.

Since d(ϕ1)1 = d(ϕ2)1, we conclude that ϕ1 = ϕ2 on exp
G
(U). However, as G is connected,

Proposition 2.18 implies that G is generated by exp
G
(U) (we can easily find a symmetric

neighborhood of 1 in exp
G
(U)). Therefore, ϕ1 = ϕ2 on G.

The above proposition shows that if G is connected, then a homomorphism of Lie groups,
ϕ : G → H, is uniquely determined by the Lie algebra homomorphism, dϕ1 : g → h.

We obtain another useful corollary of Proposition 5.4 when we apply it to the adjoint
representation of G,

Ad: G → GL(g)

and to the conjugation map,
Ada : G → G,

where Ada(b) = aba−1. In the first case, dAd1 = ad, with ad: g → gl(g) and in the second
case, d(Ada)1 = Ada.

Proposition 5.6 Given any Lie group, G, the following properties hold:

(1)
Ad(exp(u)) = ead(u), for all u ∈ g,

where exp: g → G is the exponential of the Lie group, G, and f �→ ef is the exponential
map given by

ef =
∞�

k=0

fk

k!
,

for any linear map (matrix), f ∈ gl(g). Equivalently, the following diagram commutes:

G Ad �� GL(g)

g
ad
��

exp

��

gl(g).

f �→e
f

��

(2)
exp(tAdg(u)) = g exp(tu)g−1,
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for all u ∈ g, all g ∈ G and all t ∈ R. Equivalently, the following diagram commutes:

G
Adg �� G

g
Adg
��

exp

��

g.

exp

��

Since the Lie algebra g = T1G is isomorphic to the vector space of left-invariant vector
fields on G and since the Lie bracket of vector fields makes sense (see Definition 3.16), it
is natural to ask if there is any relationship between, [u, v], where [u, v] = ad(u)(v), and
the Lie bracket, [uL, vL], of the left-invariant vector fields associated with u, v ∈ g. The
answer is: Yes, they coincide (via the correspondence u �→ uL). This fact is recorded in the
proposition below whose proof involves some rather acrobatic uses of the chain rule found in
Warner [147] (Chapter 3), Bröcker and tom Dieck [25] (Chapter 1, Section 2), or Marsden
and Ratiu [102] (Chapter 9).

Proposition 5.7 Given a Lie group, G, we have

[uL, vL](1) = ad(u)(v), for all u, v ∈ g.

We can apply Proposition 2.22 and use the exponential map to prove a useful result
about Lie groups. If G is a Lie group, let G0 be the connected component of the identity.
We know G0 is a topological normal subgroup of G and it is a submanifold in an obvious
way, so it is a Lie group.

Proposition 5.8 If G is a Lie group and G0 is the connected component of 1, then G0 is
generated by exp(g). Moreover, G0 is countable at infinity.

Proof . We can find a symmetric open, U , in g in containing 0, on which exp is a diffeo-
morphism. Then, apply Proposition 2.22 to V = exp(U). That G0 is countable at infinity
follows from Proposition 2.23.

5.3 Homomorphisms of Lie Groups and Lie Algebras,
Lie Subgroups

If G and H are two Lie groups and ϕ : G → H is a homomorphism of Lie groups, then
dϕ1 : g → h is a linear map between the Lie algebras g and h of G and H. In fact, it is a Lie
algebra homomorphism, as shown below.
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Proposition 5.9 If G and H are two Lie groups and ϕ : G → H is a homomorphism of Lie
groups, then

dϕ1 ◦ Adg = Adϕ(g) ◦ dϕ1, for all g ∈ G,

that is, the following diagram commutes

g
dϕ1 ��

Adg
��

h

Adϕ(g)

��
g

dϕ1

�� h

and dϕ1 : g → h is a Lie algebra homomorphism.

Proof . Recall that
Ra−1La(b) = aba−1, for all a, b ∈ G

and that the derivative
d(Ra−1La)1 : g → g

of Ra−1La at 1 is an isomorphism of Lie algebras, denoted by Ada : g → g. The map a �→ Ada

is a map of Lie groups
Ad: G → GL(g),

(where GL(g) denotes the Lie group of all bijective linear maps on g) and the derivative

dAd1 : g → gl(g)

of Ad at 1 is map of Lie algebras, denoted by

ad: g → gl(g),

called the adjoint representation of g (where gl(g) denotes the Lie algebra of all linear maps
on g). Then, the Lie bracket is defined by

[u, v] = ad(u)(v), for all u, v ∈ g.

Now, as ϕ is a homomorphism, we have

ϕ(Ra−1La(b)) = ϕ(aba−1) = ϕ(a)ϕ(b)ϕ(a)−1 = Rϕ(a)−1Lϕ(a)(ϕ(b)),

and by differentiating w.r.t. b at b = 1 in the direction, v ∈ g, we get

dϕ1(Ada(v)) = Adϕ(a)(dϕ1(v)),

proving the first part of the proposition. Differentiating again with respect to a at a = 1 in
the direction, u ∈ g, (and using the chain rule), we get

dϕ1(ad(u)(v)) = ad(dϕ1(u))(dϕ1(v)),
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i.e.,
dϕ1[u, v] = [dϕ1(u), dϕ1(v)],

which proves that dϕ1 is indeed a Lie algebra homomorphism.

Remark: If we identify the Lie algebra, g, of G with the space of left-invariant vector fields
on G, the map dϕ1 : g → h is viewed as the map such that, for every left-invariant vector
field, X, on G, the vector field dϕ1(X) is the unique left-invariant vector field on H such
that

dϕ1(X)(1) = dϕ1(X(1)),

i.e., dϕ1(X) = dϕ1(X(1))L. Then, we can give another proof of the fact that dϕ1 is a Lie
algebra homomorphism using the notion of ϕ-related vector fields.

Proposition 5.10 If G and H are two Lie groups and ϕ : G → H is a homomorphism of
Lie groups, if we identify g (resp. h) with the space of left-invariant vector fields on G (resp.
left-invariant vector fields on H), then,

(a) X and dϕ1(X) are ϕ-related, for every left-invariant vector field, X, on G;

(b) dϕ1 : g → h is a Lie algebra homomorphism.

Proof . The proof uses Proposition 3.14. For details, see Warner [147].

We now consider Lie subgroups. As a preliminary result, note that if ϕ : G → H is an
injective Lie group homomorphism, then dϕg : TgG → Tϕ(g)H is injective for all g ∈ G. As
g = T1G and TgG are isomorphic for all g ∈ G (and similarly for h = T1H and ThH for all
h ∈ H), it is sufficient to check that dϕ1 : g → h is injective. However, by Proposition 5.4,
the diagram

G
ϕ �� H

g
dϕ1

��

exp

��

h

exp

��

commutes, and since the exponential map is a local diffeomorphism at 0, as ϕ is injective,
then dϕ1 is injective, too. Therefore, if ϕ : G → H is injective, it is automatically an
immersion.

Definition 5.7 Let G be a Lie group. A set, H, is an immersed (Lie) subgroup of G iff

(a) H is a Lie group;

(b) There is an injective Lie group homomorphism, ϕ : H → G (and thus, ϕ is an immer-
sion, as noted above).

We say that H is a Lie subgroup (or closed Lie subgroup) of G iff H is a Lie group that is a
subgroup of G and also a submanifold of G.
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Observe that an immersed Lie subgroup, H, is an immersed submanifold, since ϕ is an
injective immersion. However, ϕ(H) may not have the subspace topology inherited from G
and ϕ(H) may not be closed.

An example of this situation is provided by the 2-torus, T 2 ∼= SO(2)×SO(2), which can
be identified with the group of 2× 2 complex diagonal matrices of the form

�
eiθ1 0
0 eiθ2

�

where θ1, θ2 ∈ R. For any c ∈ R, let Sc be the subgroup of T 2 consisting of all matrices of
the form �

eit 0
0 eict

�
, t ∈ R.

It is easily checked that Sc is an immersed Lie subgroup of T 2 iff c is irrational. However,
when c is irrational, one can show that Sc is dense in T 2 but not closed.

As we will see below, a Lie subgroup, is always closed. We borrowed the terminology
“immersed subgroup” from Fulton and Harris [57] (Chapter 7), but we warn the reader that
most books call such subgroups “Lie subgroups” and refer to the second kind of subgroups
(that are submanifolds) as “closed subgroups”.

Theorem 5.11 Let G be a Lie group and let (H,ϕ) be an immersed Lie subgroup of G.
Then, ϕ is an embedding iff ϕ(H) is closed in G. As as consequence, any Lie subgroup of G
is closed.

Proof . The proof can be found in Warner [147] (Chapter 1, Theorem 3.21) and uses a little
more machinery than we have introduced. However, we prove that a Lie subgroup, H, of G
is closed. The key to the argument is this: Since H is a submanifold of G, there is chart,
(U, ϕ), of G, with 1 ∈ U , so that

ϕ(U ∩H) = ϕ(U) ∩ (Rm × {0n−m}).

By Proposition 2.15, we can find some open subset, V ⊆ U , with 1 ∈ V , so that V = V −1

and V ⊆ U . Observe that

ϕ(V ∩H) = ϕ(V ) ∩ (Rm × {0n−m})

and since V is closed and ϕ is a homeomorphism, it follows that V ∩ H is closed. Thus,

V ∩H = V ∩H (as V ∩H = V ∩H). Now, pick any y ∈ H. As 1 ∈ V −1, the open set yV −1

contains y and since y ∈ H, we must have yV −1 ∩H �= ∅. Let x ∈ yV −1 ∩H, then x ∈ H
and y ∈ xV . Then, y ∈ xV ∩H, which implies x−1y ∈ V ∩H ⊆ V ∩H = V ∩H. Therefore,
x−1y ∈ H and since x ∈ H, we get y ∈ H and H is closed.

We also have the following important and useful theorem: If G is a Lie group, say that
a subset, H ⊆ G, is an abstract subgroup iff it is just a subgroup of the underlying group of
G (i.e., we forget the topology and the manifold structure).
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Theorem 5.12 Let G be a Lie group. An abstract subgroup, H, of G is a submanifold (i.e.,
a Lie subgroup) of G iff H is closed (i.e, H with the induced topology is closed in G).

Proof . We proved the easy direction of this theorem above. Conversely, we need to prove
that if the subgroup, H, with the induced topology is closed in G, then it is a manifold.
This can be done using the exponential map, but it is harder. For details, see Bröcker and
tom Dieck [25] (Chapter 1, Section 3) or Warner [147], Chapter 3.

5.4 The Correspondence Lie Groups–Lie Algebras

Historically, Lie was the first to understand that a lot of the structure of a Lie group is
captured by its Lie algebra, a simpler object (since it is a vector space). In this short
section, we state without proof some of the “Lie theorems”, although not in their original
form.

Definition 5.8 If g is a Lie algebra, a subalgebra, h, of g is a (linear) subspace of g such
that [u, v] ∈ h, for all u, v ∈ h. If h is a (linear) subspace of g such that [u, v] ∈ h for all
u ∈ h and all v ∈ g, we say that h is an ideal in g.

For a proof of the theorem below, see Warner [147] (Chapter 3) or Duistermaat and Kolk
[53] (Chapter 1, Section 10).

Theorem 5.13 Let G be a Lie group with Lie algebra, g, and let (H,ϕ) be an immersed
Lie subgroup of G with Lie algebra h, then dϕ1h is a Lie subalgebra of g. Conversely, for
each subalgebra, �h, of g, there is a unique connected immersed subgroup, (H,ϕ), of G so that
dϕ1h = �h. In fact, as a group, ϕ(H) is the subgroup of G generated by exp(�h). Furthermore,
normal subgroups correspond to ideals.

Theorem 5.13 shows that there is a one-to-one correspondence between connected im-
mersed subgroups of a Lie group and subalgebras of its Lie algebra.

Theorem 5.14 Let G and H be Lie groups with G connected and simply connected and let
g and h be their Lie algebras. For every homomorphism, ψ : g → h, there is a unique Lie
group homomorphism, ϕ : G → H, so that dϕ1 = ψ.

Again a proof of the theorem above is given in Warner [147] (Chapter 3) or Duistermaat
and Kolk [53] (Chapter 1, Section 10).

Corollary 5.15 If G and H are connected and simply connected Lie groups, then G and H
are isomorphic iff g and h are isomorphic.
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It can also be shown that for every finite-dimensional Lie algebra, g, there is a connected
and simply connected Lie group, G, such that g is the Lie algebra of G. This is a consequence
of deep theorem (whose proof is quite hard) known as Ado’s theorem. For more on this, see
Knapp [89], Fulton and Harris [57], or Bourbaki [22].

In summary, following Fulton and Harris, we have the following two principles of the Lie
group/Lie algebra correspondence:

First Principle: If G and H are Lie groups, with G connected, then a homomorphism of Lie
groups, ϕ : G → H, is uniquely determined by the Lie algebra homomorphism, dϕ1 : g → h.

Second Principle: Let G and H be Lie groups with G connected and simply connected and
let g and h be their Lie algebras. A linear map, ψ : g → h, is a Lie algebra map iff there is a
unique Lie group homomorphism, ϕ : G → H, so that dϕ1 = ψ.

5.5 More on the Lorentz Group SO0(n, 1)

In this section, we take a closer look at the Lorentz group SO0(n, 1) and, in particular, at the
relationship between SO0(n, 1) and its Lie algebra, so(n, 1). The Lie algebra of SO0(n, 1)
is easily determined by computing the tangent vectors to curves, t �→ A(t), on SO0(n, 1)
through the identity, I. Since A(t) satisfies

A�JA = J,

differentiating and using the fact that A(0) = I, we get

A��J + JA� = 0.

Therefore,
so(n, 1) = {A ∈ Matn+1,n+1(R) | A�J + JA = 0}.

This means that JA is skew-symmetric and so,

so(n, 1) =

��
B u
u� 0

�
∈ Matn+1,n+1(R) | u ∈ R

n, B� = −B

�
.

Observe that every matrix A ∈ so(n, 1) can be written uniquely as

�
B u
u� 0

�
=

�
B 0
0� 0

�
+

�
0 u
u� 0

�
,

where the first matrix is skew-symmetric, the second one is symmetric and both belong to
so(n, 1). Thus, it is natural to define

k =

��
B 0
0� 0

�
| B� = −B

�
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and

p =

��
0 u
u� 0

�
| u ∈ R

n

�
.

It is immediately verified that both k and p are subspaces of so(n, 1) (as vector spaces) and
that k is a Lie subalgebra isomorphic to so(n), but p is not a Lie subalgebra of so(n, 1)
because it is not closed under the Lie bracket. Still, we have

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k.

Clearly, we have the direct sum decomposition

so(n, 1) = k⊕ p,

known as Cartan decomposition. There is also an automorphism of so(n, 1) known as the
Cartan involution, namely,

θ(A) = −A�,

and we see that

k = {A ∈ so(n, 1) | θ(A) = A} and p = {A ∈ so(n, 1) | θ(A) = −A}.

Unfortunately, there does not appear to be any simple way of obtaining a formula for
exp(A), where A ∈ so(n, 1) (except for small n—there is such a formula for n = 3 due to
Chris Geyer). However, it is possible to obtain an explicit formula for the matrices in p.
This is because for such matrices, A, if we let ω = �u� =

√
u�u, we have

A3 = ω2A.

Thus, we get

Proposition 5.16 For every matrix, A ∈ p, of the form

A =

�
0 u
u� 0

�
,

we have

eA =

�
I + (coshω−1)

ω2 uu� sinhω

ω
u

sinhω

ω
u� coshω

�
=

��
I + sinh2 ω

ω2 uu� sinhω

ω
u

sinhω

ω
u� coshω

�
.

Proof . Using the fact that A3 = ω2A, we easily prove that

eA = I +
sinhω

ω
A+

coshω − 1

ω2
A2,

which is the first equation of the proposition, since

A2 =

�
uu� 0
0 u�u

�
=

�
uu� 0
0 ω2

�
.
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We leave as an exercise the fact that
�
I +

(coshω − 1)

ω2
uu�

�2

= I +
sinh2 ω

ω2
uu�.

Now, it clear from the above formula that each eB, with B ∈ p is a Lorentz boost.
Conversely, every Lorentz boost is the exponential of some B ∈ p, as shown below.

Proposition 5.17 Every Lorentz boost,

A =

�√
I + vv� v
v� c

�
,

with c =
�

�v�2 + 1, is of the form A = eB, for B ∈ p, i.e., for some B ∈ so(n, 1) of the
form

B =

�
0 u
u� 0

�
.

Proof . We need to find some

B =

�
0 u
u� 0

�

solving the equation
��

I + sinh2 ω
ω2 uu� sinhω

ω
u

sinhω

ω
u� coshω

�
=

�√
I + vv� v
v� c

�
,

with ω = �u� and c =
�

�v�2 + 1. When v = 0, we have A = I, and the matrix B = 0
corresponding to u = 0 works. So, assume v �= 0. In this case, c > 1. We have to solve the
equation coshω = c, that is,

e2ω − 2ceω + 1 = 0.

The roots of the corresponding algebraic equation X2 − 2cX + 1 = 0 are

X = c±
√
c2 − 1.

As c > 1, both roots are strictly positive, so we can solve for ω, say ω = log(c+
√
c2 − 1) �= 0.

Then, sinhω �= 0, so we can solve the equation

sinhω

ω
u = v,

which yields a B ∈ so(n, 1) of the right form with A = eB.

Remarks:
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(1) It is easy to show that the eigenvalues of matrices

B =

�
0 u
u� 0

�

are 0, with multiplicity n− 1, �u� and −�u�. Eigenvectors are also easily determined.

(2) The matrices, B ∈ so(n, 1), of the form

B =





0 · · · 0 0
...

. . .
...

...
0 · · · 0 α
0 · · · α 0





are easily seen to form an abelian Lie subalgebra, a, of so(n, 1) (which means that for
all B,C ∈ a, [B,C] = 0, i.e., BC = CB). One will easily check that for any B ∈ a, as
above, we get

eB =





1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 coshα sinhα
0 · · · 0 sinhα coshα





The matrices of the form, eB, with B ∈ a, form an abelian subgroup, A, of SO0(n, 1)
isomorphic to SO0(1, 1). As we already know, the matrices, B ∈ so(n, 1), of the form

�
B 0
0 0

�
,

where B is skew-symmetric, form a Lie subalgebra, k, of so(n, 1). Clearly, k is isomor-
phic to so(n) and using the exponential, we get a subgroup, K, of SO0(n, 1) isomorphic
to SO(n). It is also clear that k ∩ a = (0), but k⊕ a is not equal to so(n, 1). What is
the missing piece? Consider the matrices, N ∈ so(n, 1), of the form

N =




0 −u u
u� 0 0
u� 0 0



 ,

where u ∈ R
n−1. The reader should check that these matrices form an abelian Lie

subalgebra, n, of so(n, 1) and that

so(n, 1) = k⊕ a⊕ n.

This is the Iwasawa decomposition of the Lie algebra so(n, 1). Furthermore, the reader
should check that every N ∈ n is nilpotent; in fact, N3 = 0. (It turns out that n is
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a nilpotent Lie algebra, see Knapp [89]). The connected Lie subgroup of SO0(n, 1)
associated with n is denoted N and it can be shown that we have the Iwasawa decom-
position of the Lie group SO0(n, 1):

SO0(n, 1) = KAN.

It is easy to check that [a, n] ⊆ n, so a ⊕ n is a Lie subalgebra of so(n, 1) and n is an
ideal of a⊕n. This implies that N is normal in the group corresponding to a⊕n, so AN
is a subgroup (in fact, solvable) of SO0(n, 1). For more on the Iwasawa decomposition,
see Knapp [89]. Observe that the image, n, of n under the Cartan involution, θ, is the
Lie subalgebra

n =









0 u u

−u� 0 0
u� 0 0



 | u ∈ R
n−1




 .

It is easy to see that the centralizer of a is the Lie subalgebra

m =

��
B 0
0 0

�
∈ Matn+1,n+1(R) | B ∈ so(n− 1)

�

and the reader should check that

so(n, 1) = m⊕ a⊕ n⊕ n.

We also have
[m, n] ⊆ n,

so m⊕a⊕n is a subalgebra of so(n, 1). The group, M , associated with m is isomorphic
to SO(n− 1) and it can be shown that B = MAN is a subgroup of SO0(n, 1). In fact,

SO0(n, 1)/(MAN) = KAN/MAN = K/M = SO(n)/SO(n− 1) = Sn−1.

It is customary to denote the subalgebra m ⊕ a by g0, the algebra n by g1 and n by
g−1, so that so(n, 1) = m⊕ a⊕ n⊕ n is also written

so(n, 1) = g0 ⊕ g−1 ⊕ g1.

By the way, if N ∈ n, then

eN = I +N +
1

2
N2,

and since N + 1
2N

2 is also nilpotent, eN can’t be diagonalized when N �= 0. This
provides a simple example of matrices in SO0(n, 1) that can’t be diagonalized.

Combining Proposition 2.3 and Proposition 5.17, we have the corollary:
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Corollary 5.18 Every matrix, A ∈ O(n, 1), can be written as

A =

�
Q 0
0 �

�
e



 0 u
u� 0





where Q ∈ O(n), � = ±1 and u ∈ R
n.

Observe that Corollary 5.18 proves that every matrix, A ∈ SO0(n, 1), can be written as

A = PeS, with P ∈ K ∼= SO(n) and S ∈ p,

i.e.,
SO0(n, 1) = K exp(p),

a version of the polar decomposition for SO0(n, 1).

Now, it is known that the exponential map, exp: so(n) → SO(n), is surjective. So, when
A ∈ SO0(n, 1), since then Q ∈ SO(n) and � = +1, the matrix

�
Q 0
0 1

�

is the exponential of some skew symmetric matrix

C =

�
B 0
0 0

�
∈ so(n, 1),

and we can write A = eCeZ , with C ∈ k and Z ∈ p. Unfortunately, C and Z generally
don’t commute, so it is generally not true that A = eC+Z . Thus, we don’t get an “easy”
proof of the surjectivity of the exponential, exp: so(n, 1) → SO0(n, 1). This is not too
surprising because, to the best of our knowledge, proving surjectivity for all n is not a simple
matter. One proof is due to Nishikawa [118] (1983). Nishikawa’s paper is rather short, but
this is misleading. Indeed, Nishikawa relies on a classic paper by Djokovic [48], which itself
relies heavily on another fundamental paper by Burgoyne and Cushman [27], published in
1977. Burgoyne and Cushman determine the conjugacy classes for some linear Lie groups
and their Lie algebras, where the linear groups arise from an inner product space (real or
complex). This inner product is nondegenerate, symmetric, or hermitian or skew-symmetric
of skew-hermitian. Altogether, one has to read over 40 pages to fully understand the proof
of surjectivity.

In his introduction, Nishikawa states that he is not aware of any other proof of the
surjectivity of the exponential for SO0(n, 1). However, such a proof was also given by Marcel
Riesz as early as 1957, in some lectures notes that he gave while visiting the University of
Maryland in 1957-1958. These notes were probably not easily available until 1993, when
they were published in book form, with commentaries, by Bolinder and Lounesto [126].
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Interestingly, these two proofs use very different methods. The Nishikawa–Djokovic–
Burgoyne and Cushman proof makes heavy use of methods in Lie groups and Lie algebra,
although not far beyond linear algebra. Riesz’s proof begins with a deep study of the
structure of the minimal polynomial of a Lorentz isometry (Chapter III). This is a beautiful
argument that takes about 10 pages. The story is not over, as it takes most of Chapter IV
(some 40 pages) to prove the surjectivity of the exponential (actually, Riesz proves other
things along the way). In any case, the reader can see that both proofs are quite involved.

It is worth noting that Milnor (1969) also uses techniques very similar to those used by
Riesz (in dealing with minimal polynomials of isometries) in his paper on isometries of inner
product spaces [107].

What we will do to close this section is to give a relatively simple proof that the exponen-
tial map, exp: so(1, 3) → SO0(1, 3), is surjective. In the case of SO0(1, 3), we can use the
fact that SL(2,C) is a two-sheeted covering space of SO0(1, 3), which means that there is
a homomorphism, ϕ : SL(2,C) → SO0(1, 3), which is surjective and that Ker ϕ = {−I, I).
Then, the small miracle is that, although the exponential, exp: sl(2,C) → SL(2,C), is not
surjective, for every A ∈ SL(2,C), either A or −A is in the image of the exponential!

Proposition 5.19 Given any matrix

B =

�
a b
c −a

�
∈ sl(2,C),

let ω be any of the two complex roots of a2 + bc. If ω �= 0, then

eB = coshω I +
sinh ω

ω
B,

and eB = I + B, if a2 + bc = 0. Furthermore, every matrix A ∈ SL(2,C) is in the image of
the exponential map, unless A = −I +N , where N is a nonzero nilpotent (i.e., N2 = 0 with
N �= 0). Consequently, for any A ∈ SL(2,C), either A or −A is of the form eB, for some
B ∈ sl(2,C).

Proof . Observe that

A2 =

�
a b
c −a

��
a b
c −a

�
= (a2 + bc)I.

Then, it is straighforward to prove that

eB = coshω I +
sinh ω

ω
B,

where ω is a square root of a2 + bc is ω �= 0, otherwise, eB = I +B.

Let

A =

�
α β
γ δ

�
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be any matrix in SL(2,C). We would like to find a matrix, B ∈ sl(2,C), so that A = eB. In
view of the above, we need to solve the system

coshω +
sinhω

ω
a = α

coshω − sinhω

ω
a = δ

sinhω

ω
b = β

sinhω

ω
c = γ.

From the first two equations, we get

coshω =
α + δ

2
sinhω

ω
a =

α− δ

2
.

Thus, we see that we need to know whether complex cosh is surjective and when complex
sinh is zero. We claim:

(1) cosh is surjective.

(2) sinh z = 0 iff z = nπi, where n ∈ Z.

Given any c ∈ C, we have coshω = c iff

e2ω − 2eωc+ 1 = 0.

The corresponding algebraic equation

Z2 − 2cZ + 1 = 0

has discriminant 4(c2 − 1) and it has two complex roots

Z = c±
√
c2 − 1

where
√
c2 − 1 is some square root of c2 − 1. Observe that these roots are never zero.

Therefore, we can find a complex log of c +
√
c2 − 1, say ω, so that eω = c +

√
c2 − 1 is a

solution of e2ω − 2eωc+ 1 = 0. This proves the surjectivity of cosh.

We have sinhω = 0 iff e2ω = 1; this holds iff 2ω = n2πi, i.e., ω = nπi.

Observe that

sinhnπi

nπi
= 0 if n �= 0, but

sinhnπi

nπi
= 1 when n = 0.
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We know that

coshω =
α + δ

2

can always be solved.

Case 1. If ω �= nπi, with n �= 0, then

sinhω

ω
�= 0

and the other equations can be solved, too (this includes the case ω = 0). Therefore, in this
case, the exponential is surjective. It remains to examine the other case.

Case 2. Assume ω = nπi, with n �= 0. If n is even, then eω = 1, which implies

α + δ = 2.

However, αδ− βγ = 1 (since A ∈ SL(2,C)), so we deduce that A has the double eigenvalue,
1. Thus, N = A − I is nilpotent (i.e., N2 = 0) and has zero trace; but then, N ∈ sl(2,C)
and

eN = I +N = I + A− I = A.

If n is odd, then eω = −1, which implies

α + δ = −2.

In this case, A has the double eigenvalue −1 and A+ I = N is nilpotent. So, A = −I +N ,
where N is nilpotent. If N �= 0, then A cannot be diagonalized. We claim that there is no
B ∈ sl(2,C) so that eB = A.

Indeed, any matrix, B ∈ sl(2,C), has zero trace, which means that if λ1 and λ2 are the
eigenvalues of B, then λ1 = −λ2. If λ1 �= 0, then λ1 �= λ2 so B can be diagonalized, but
then eB can also be diagonalized, contradicting the fact that A can’t be diagonalized. If
λ1 = λ2 = 0, then eB has the double eigenvalue +1, but A has eigenvalues −1. Therefore,
the only matrices A ∈ SL(2,C) that are not in the image of the exponential are those of the
form A = −I + N , where N is a nonzero nilpotent. However, note that −A = I − N is in
the image of the exponential.

Remark: If we restrict our attention to SL(2,R), then we have the following proposition
that can be used to prove that the exponential map, exp: so(1, 2) → SO0(1, 2), is surjective:

Proposition 5.20 Given any matrix

B =

�
a b
c −a

�
∈ sl(2,R),
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if a2 + b > 0, then let ω =
√
a2 + bc > 0 and if a2 + b < 0, then let ω =

�
−(a2 + bc) > 0

(i.e., ω2 = −(a2 + bc)). In the first case (a2 + bc > 0), we have

eB = coshω I +
sinh ω

ω
B,

and in the second case (a2 + bc < 0), we have

eB = cosω I +
sin ω

ω
B.

If a2+bc = 0, then eB = I+B. Furthermore, every matrix A ∈ SL(2,R) whose trace satisfies
tr(A) ≥ −2 in the image of the exponential map. Consequently, for any A ∈ SL(2,R), either
A or −A is of the form eB, for some B ∈ sl(2,R).

We now return to the relationship between SL(2,C) and SO0(1, 3). In order to define a
homomorphism, ϕ : SL(2,C) → SO0(1, 3), we begin by defining a linear bijection, h, between
R

4 and H(2), the set of complex 2× 2 Hermitian matrices, by

(t, x, y, z) �→
�
t+ x y − iz
y + iz t− x

�
.

Those familiar with quantum physics will recognize a linear combination of the Pauli matri-
ces! The inverse map is easily defined and we leave it as an exercise. For instance, given a
Hermitian matrix �

a b
c d

�

we have

t =
a+ d

2
, x =

a− d

2
, etc.

Next, for any A ∈ SL(2,C), we define a map, lA : H(2) → H(2), via

S �→ ASA∗.

(Here, A∗ = A
�
.) Using the linear bijection, h : R4 → H(2), and its inverse, we obtain a

map, lorA : R4 → R
4, where

lorA = h−1 ◦ lA ◦ h.

As ASA∗ is hermitian, we see that lA is well defined. It is obviously linear and since
det(A) = 1 (recall, A ∈ SL(2,C)) and

det

�
t+ x y − iz
y + iz t− x

�
= t2 − x2 − y2 − z2,
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we see that lorA preserves the Lorentz metric! Furthermore, it is not hard to prove that
SL(2,C) is connected (use the polar form or analyze the eigenvalues of a matrix in SL(2,C),
for example, as in Duistermatt and Kolk [53] (Chapter 1, Section 1.2)) and that the map

ϕ : A �→ lorA

is a continuous group homomorphism. Thus, the range of ϕ is a connected subgroup of
SO0(1, 3). This shows that ϕ : SL(2,C) → SO0(1, 3) is indeed a homomorphism. It remains
to prove that it is surjective and that its kernel is {I,−I}.

Proposition 5.21 The homomorphism, ϕ : SL(2,C) → SO0(1, 3), is surjective and its ker-
nel is {I,−I}.

Proof . Recall that from Theorem 2.6, the Lorentz group SO0(1, 3) is generated by the
matrices of the form �

1 0
0 P

�
with P ∈ SO(3)

and the matrices of the form




coshα sinhα 0 0
sinhα coshα 0 0

0 0 1 0
0 0 0 1



 .

Thus, to prove the surjectivity of ϕ, it is enough to check that the above matrices are in the
range of ϕ. For matrices of the second kind, the reader should check that

A =

�
e

1
2α 0
0 e−

1
2α

�

does the job. For matrices of the first kind, we recall that the group of unit quaternions,
q = a1+ bi+ cj+ dk, can be viewed as SU(2), via the correspondence

a1+ bi+ cj+ dk �→
�

a+ ib c+ id
−c+ id a− ib

�
,

where a, b, c, d ∈ R and a2 + b2 + c2 + d2 = 1. Moreover, the algebra of quaternions, H, is
the real algebra of matrices as above, without the restriction a2 + b2 + c2 + d2 = 1 and R

3

is embedded in H as the pure quaternions , i.e., those for which a = 0. Observe that when
a = 0, �

ib c+ id
−c+ id −ib

�
= i

�
b d− ic

d+ ic −b

�
= ih(0, b, d, c).

Therefore, we have a bijection between the pure quaternions and the subspace of the hermi-
tian matrices �

b d− ic
d+ ic −b

�
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for which a = 0, the inverse being division by i, i.e., multiplication by −i. Also, when q is a
unit quaternion, let q = a1− bi− cj− dk, and observe that q = q−1. Using the embedding
R

3 �→ H, for every unit quaternion, q ∈ SU(2), define the map, ρq : R3 → R
3, by

ρq(X) = qXq = qXq−1,

for all X ∈ R
3 �→ H. Then, it is well known that ρq is a rotation (i.e., ρq ∈ SO(3))

and, moreover, the map q �→ ρq, is a surjective homomorphism, ρ : SU(2) → SO(3), and
Ker ϕ = {I,−I} (For example, see Gallier [58], Chapter 8).

Now, consider a matrix, A, of the form
�
1 0
0 P

�
with P ∈ SO(3).

We claim that we can find a matrix, B ∈ SL(2,C), such that ϕ(B) = lorB = A. We claim
that we can pick B ∈ SU(2) ⊆ SL(2,C). Indeed, if B ∈ SU(2), then B∗ = B−1, so

B

�
t+ x y − iz
y + iz t− x

�
B∗ = t

�
1 0
0 1

�
− iB

�
ix z + iy

−z + iy −ix

�
B−1.

The above shows that lorB leaves the coordinate t invariant. The term

B

�
ix z + iy

−z + iy −ix

�
B−1

is a pure quaternion corresponding to the application of the rotation ρB induced by the
quaternion B to the pure quaternion associated with (x, y, z) and multiplication by −i is
just the corresponding hermitian matrix, as explained above. But, we know that for any
P ∈ SO(3), there is a quaternion, B, so that ρB = P , so we can find our B ∈ SU(2) so that

lorB =

�
1 0
0 P

�
= A.

Finally, assume that ϕ(A) = I. This means that

ASA∗ = S,

for all hermitian matrices, S, defined above. In particular, for S = I, we get AA∗ = I, i.e.,
A ∈ SU(2). We have

AS = SA

for all hermitian matrices, S, defined above, so in particular, this holds for diagonal matrices
of the form �

t+ x 0
0 t− x

�
,
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with t+ x �= t− x. We deduce that A is a diagonal matrix, and since it is unitary, we must
have A = ±I. Therefore, Kerϕ = {I,−I}.

Remark: The group SL(2,C) is isomorphic to the group Spin(1, 3), which is a (simply-
connected) double-cover of SO0(1, 3). This is a standard result of Clifford algebra theory,
see Bröcker and tom Dieck [25] or Fulton and Harris [57]. What we just did is to provide a
direct proof of this fact.

We just proved that there is an isomorphism

SL(2,C)/{I,−I} ∼= SO0(1, 3).

However, the reader may recall that SL(2,C)/{I,−I} = PSL(2,C) ∼= Möb+. Therefore,
the Lorentz group is isomorphic to the Möbius group.

We now have all the tools to prove that the exponential map, exp: so(1, 3) → SO0(1, 3),
is surjective.

Theorem 5.22 The exponential map, exp: so(1, 3) → SO0(1, 3), is surjective.

Proof . First, recall from Proposition 5.4 that the following diagram commutes:

SL(2,C)
ϕ �� SO0(1, 3)

sl(2,C)
dϕ1

��

exp

��

so(1, 3)

exp

��
.

Pick any A ∈ SO0(1, 3). By Proposition 5.21, the homomorphism ϕ is surjective and as
Kerϕ = {I,−I}, there exists some B ∈ SL(2,C) so that

ϕ(B) = ϕ(−B) = A.

Now, by Proposition 5.19, for any B ∈ SL(2,C), either B or −B is of the form eC , for some
C ∈ sl(2,C). By the commutativity of the diagram, if we let D = dϕ1(C) ∈ so(1, 3), we get

A = ϕ(±eC) = edϕ1(C) = eD,

with D ∈ so(1, 3), as required.

Remark: We can restrict the bijection, h : R4 → H(2), defined earlier to a bijection between
R

3 and the space of real symmetric matrices of the form

�
t+ x y
y t− x

�
.
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Then, if we also restrict ourselves to SL(2,R), for any A ∈ SL(2,R) and any symmetric
matrix, S, as above, we get a map

S �→ ASA�.

The reader should check that these transformations correspond to isometries in SO0(1, 2) and
we get a homomorphism, ϕ : SL(2,R) → SO0(1, 2). Then, we have a version of Proposition
5.21 for SL(2,R) and SO0(1, 2):

Proposition 5.23 The homomorphism, ϕ : SL(2,R) → SO0(1, 2), is surjective and its ker-
nel is {I,−I}.

Using Proposition 5.23 and Proposition 5.20, we get a version of Theorem 5.22 for
SO0(1, 2):

Theorem 5.24 The exponential map, exp: so(1, 2) → SO0(1, 2), is surjective.

Also observe that SO0(1, 1) consists of the matrices of the form

A =

�
coshα sinhα
sinhα coshα

�

and a direct computation shows that

e



0 α
α 0





=

�
coshα sinhα
sinhα coshα

�
.

Thus, we see that the map exp: so(1, 1) → SO0(1, 1) is also surjective. Therefore, we have
proved that exp: so(1, n) → SO0(1, n) is surjective for n = 1, 2, 3. This actually holds for
all n ≥ 1, but the proof is much more involved, as we already discussed earlier.

5.6 More on the Topology of O(p, q) and SO(p, q)

It turns out that the topology of the group, O(p, q), is completely determined by the topology
of O(p) and O(q). This result can be obtained as a simple consequence of some standard
Lie group theory. The key notion is that of a pseudo-algebraic group.

Consider the group, GL(n,C), of invertible n× n matrices with complex coefficients. If
A = (akl) is such a matrix, denote by xkl the real part (resp. ykl, the imaginary part) of akl
(so, akl = xkl + iykl).

Definition 5.9 A subgroup, G, of GL(n,C) is pseudo-algebraic iff there is a finite set of
polynomials in 2n2 variables with real coefficients, {Pi(X1, . . . , Xn2 , Y1, . . . , Yn2)}t

i=1, so that

A = (xkl + iykl) ∈ G iff Pi(x11, . . . , xnn, y11, . . . , ynn) = 0, for i = 1, . . . , t.
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Recall that if A is a complex n × n-matrix, its adjoint , A∗, is defined by A∗ = (A)�.
Also, U(n) denotes the group of unitary matrices, i.e., those matrices, A ∈ GL(n,C), so
that AA∗ = A∗A = I, and H(n) denotes the vector space of Hermitian matrices, i.e., those
matrices, A, so that A∗ = A. Then, we have the following theorem which is essentially a
refined version of the polar decomposition of matrices:

Theorem 5.25 Let G be a pseudo-algebraic subgroup of GL(n,C) stable under adjunction
(i.e., we have A∗ ∈ G whenever A ∈ G). Then, there is some integer, d ∈ N, so that G is
homeomorphic to (G ∩U(n))× R

d. Moreover, if g is the Lie algebra of G, the map

(U(n) ∩G)× (H(n) ∩ g) −→ G, given by (U,H) �→ UeH ,

is a homeomorphism onto G.

Proof . A proof can be found in Knapp [89], Chapter 1, or Mneimné and Testard [111],
Chapter 3.

We now apply Theorem 5.25 to determine the structure of the space O(p, q). We know
that O(p, q) consists of the matrices, A, in GL(p+ q,R) such that

A�Ip,qA = Ip,q,

and so, O(p, q) is clearly pseudo-algebraic. Using the above equation, it is easy to determine
the Lie algebra, o(p, q), of O(p, q). We find that o(p, q) is given by

o(p, q) =

��
X1 X2

X�
2 X3

� ���� X
�
1 = −X1, X�

3 = −X3, X2 arbitrary

�

where X1 is a p× p matrix, X3 is a q × q matrix and X2 is a p× q matrix. Consequently, it
immediately follows that

o(p, q) ∩H(p+ q) =

��
0 X2

X�
2 0

� ���� X2 arbitrary

�
,

a vector space of dimension pq.

Some simple calculations also show that

O(p, q) ∩U(p+ q) =

��
X1 0
0 X2

� ���� X1 ∈ O(p), X2 ∈ O(q)

�
∼= O(p)×O(q).

Therefore, we obtain the structure of O(p, q):

Proposition 5.26 The topological space O(p, q) is homeomorphic to O(p)×O(q)× R
pq.
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Since O(p) has two connected components when p ≥ 1, we see that O(p, q) has four
connected components when p, q ≥ 1. It is also obvious that

SO(p, q) ∩U(p+ q) =

��
X1 0
0 X2

� ���� X1 ∈ O(p), X2 ∈ O(q), det(X1) det(X2) = 1

�
.

This is a subgroup of O(p)×O(q) that we denote S(O(p)×O(q)). Furthermore, it is easy
to show that so(p, q) = o(p, q). Thus, we also have

Proposition 5.27 The topological space SO(p, q) is homeomorphic to S(O(p)×O(q))×R
pq.

Observe that the dimension of all these spaces depends only on p + q: It is (p + q)(p +
q − 1)/2. Also, SO(p, q) has two connected components when p, q ≥ 1. The connected
component of Ip+q is the group SO0(p, q). This latter space is homeomorphic to SO(p) ×
SO(q)× R

pq.

Theorem 5.25 gives the polar form of a matrix A ∈ O(p, q): We have

A = UeS, with U ∈ O(p)×O(q) and S ∈ so(p, q) ∩ S(p+ q),

where U is of the form

U =

�
P 0
0 Q

�
, with P ∈ O(p) and Q ∈ O(q)

and so(p, q) ∩ S(p+ q) consists of all (p+ q)× (p+ q) symmetric matrices of the form

S =

�
0 X
X� 0

�
,

with X an arbitrary p× q matrix. It turns out that it is not very hard to compute explicitly
the exponential, eS, of such matrices (see Mneimné and Testard [111]). Recall that the
functions cosh and sinh also make sense for matrices (since the exponential makes sense)
and are given by

cosh(A) =
eA + e−A

2
= I +

A2

2!
+ · · ·+ A2k

(2k)!
+ · · ·

and

sinh(A) =
eA − e−A

2
= A+

A3

3!
+ · · ·+ A2k+1

(2k + 1)!
+ · · · .

We also set
sinh(A)

A
= I +

A2

3!
+ · · ·+ A2k

(2k + 1)!
+ · · · ,

which is defined for all matrices, A (even when A is singular). Then, we have
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Proposition 5.28 For any matrix S of the form

S =

�
0 X
X� 0

�
,

we have

eS =




cosh((XX�)

1
2 ) sinh((XX

�)
1
2 )X

(XX�)
1
2

sinh((X�
X)

1
2 )X�

(X�X)
1
2

cosh((X�X)
1
2 )



 .

Proof . By induction, it is easy to see that

S2k =

�
(XX�)k 0

0 (X�X)k

�

and

S2k+1 =

�
0 (XX�)kX

(X�X)kX� 0

�
.

The rest is left as an exercise.

Remark: Although at first glance, eS does not look symmetric, but it is!

As a consequence of Proposition 5.28, every matrix, A ∈ O(p, q), has the polar form

A =

�
P 0
0 Q

�



cosh((XX�)

1
2 ) sinh((XX

�)
1
2 )X

(XX�)
1
2

sinh((X�
X)

1
2 )X�

(X�X)
1
2

cosh((X�X)
1
2 )



 ,

with P ∈ O(p), Q ∈ O(q) and X an arbitrary p× q matrix.

5.7 Universal Covering Groups

Every connected Lie group, G, is a manifold and, as such, from results in Section 3.9, it has
a universal cover, π : �G → G, where �G is simply connected. It is possible to make �G into a
group so that �G is a Lie group and π is a Lie group homomorphism. We content ourselves
with a sketch of the construction whose details can be found in Warner [147], Chapter 3.

Consider the map, α : �G× �G → G, given by

α(�a,�b) = π(�a)π(�b)−1,

for all �a,�b ∈ �G, and pick some �e ∈ π−1(e). Since �G × �G is simply connected, it follows by
Proposition 3.34 that there is a unique map, �α : �G× �G → �G, such that

α = π ◦ �α and �e = �α(�e, �e).
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For all �a,�b ∈ �G, define
�b−1 = �α(�e,�b), �a�b = �α(�a,�b−1). (∗)

Using Proposition 3.34, it can be shown that the above operations make �G into a group and
as �α is smooth, into a Lie group. Moreover, π becomes a Lie group homomorphism. We
summarize these facts as

Theorem 5.29 Every connected Lie group has a simply connected covering map, π : �G → G,
where �G is a Lie group and π is a Lie group homomorphism.

The group, �G, is called the universal covering group of G. Consider D = ker π. Since the
fibres of π are countable The group D is a countable closed normal subgroup of �G, that is,
a discrete normal subgroup of �G. It follows that G ∼= �G/D, where �G is a simply connected
Lie group and D is a discrete normal subgroup of �G.

We conclude this section by stating the following useful proposition whose proof can be
found in Warner [147] (Chapter 3, Proposition 3.26):

Proposition 5.30 Let ϕ : G → H be a homomorphism of connected Lie groups. Then ϕ is
a covering map iff dϕe : g → h is an isomorphism of Lie algebras.

For example, we know that su(2) = so(3), so the homomorphism from SU(2) to SO(3)
provided by the representation of 3D rotations by the quaternions is a covering map.
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