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Chapter 18

Metrics and Curvature on Lie Groups

18.1 Left (resp. Right) Invariant Metrics

Since a Lie group, G, is a smooth manifold, we can endow G with a Riemannian metric.
Among all the Riemannian metrics on a Lie groups, those for which the left translations (or
the right translations) are isometries are of particular interest because they take the group
structure of G into account. As a consequence, it is possible to find explicit formulae for the
Levi-Civita connection and the various curvatures, especially in the case of metrics which are
both left and right-invariant. This chapter makes extensive use of results from a beautiful
paper of Milnor [109].

Definition 18.1 A metric, �−,−�, on a Lie group, G, is called left-invariant (resp. right-
invariant) iff

�u, v�b = �(dLa)bu, (dLa)bv�ab,
(resp.

�u, v�b = �(dRa)bu, (dRa)bv�ba),
or all a, b ∈ G and all u, v ∈ TbG. A Riemannian metric that is both left and right-invariant
is called a bi-invariant metric.

As shown in the next proposition, left-invariant (resp. right-invariant) metrics on G are
induced by inner products on the Lie algebra, g, of G. In the sequel, the identity element of
the Lie group, G, will be denoted by e or 1.

Proposition 18.1 There is a bijective correspondence between left-invariant (resp. right
invariant) metrics on a Lie group, G, and inner products on the Lie algebra, g, of G.

Proof . If the metric on G is left-invariant, then for all a ∈ G and all u, v ∈ TaG, we have

�u, v�a = �d(La ◦ La−1)au, d(La ◦ La−1)av�a
= �(dLa)e((dLa−1)au), (dLa)e((dLa−1)av)�a
= �(dLa−1)au, (dLa−1)av�e,
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which shows that our metric is completely determined by its restriction to g = TeG. Con-
versely, let �−,−� be an inner product on g and set

�u, v�g = �(dLg−1)gu, (dLg−1)gv�,

for all u, v ∈ TgG and all g ∈ G. Obviously, the family of inner products, �−,−�g, yields a
Riemannian metric on G. To prove that it is left-invariant, we use the chain rule and the
fact that left translations are group isomorphisms. For all a, b ∈ G and all u, v ∈ TbG, we
have

�(dLa)bu, (dLa)bv�ab = �(dL(ab)−1)ab((dLa)bu), (dL(ab)−1)ab((dLa)bv)�
= �d(L(ab)−1 ◦ La)bu, d(L(ab)−1 ◦ La)bv�
= �d(Lb−1a−1 ◦ La)bu, d(Lb−1a−1 ◦ La)bv�
= �(dLb−1)bu, (dLb−1)bv�
= �u, v�b,

as desired.

To get a right-invariant metric on G, set

�u, v�g = �(dRg−1)gu, (dRg−1)gv�,

for all u, v ∈ TgG and all g ∈ G. The verification that this metric is right-invariant is
analogous.

If G has dimension n, then since inner products on g are in one-to-one correspondence
with n×n positive definite matrices, we see that G possesses a family of left-invariant metrics
of dimension 1

2 n(n+ 1).

If G has a left-invariant (resp. right-invariant) metric, since left-invariant (resp. right-
invariant) translations are isometries and act transitively on G, the space G is called a
homogeneous Riemannian manifold .

Proposition 18.2 Every Lie group, G, equipped with a left-invariant (resp. right-invariant)
metric is complete.

Proof . As G is locally compact, we can pick some � > 0 small enough so that the closed
�-ball about the identity is compact. By translation, every �-ball is compact, hence every
Cauchy sequence eventually lies within a compact set and thus, converges.

We now give several characterizations of bi-invariant metrics.
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18.2 Bi-Invariant Metrics

Recall that the adjoint representation, Ad: G → GL(g), is the map defined such that
Ada : g → g is the linear isomorphism given by

Ada = d(Ra−1 ◦ La)e,

for every a ∈ G. Clearly,
Ada = (dRa−1)a ◦ (dLa)e.

Here is the first of four criteria for the existence of a bi-invariant metric on a Lie group.

Proposition 18.3 There is a bijective correspondence between bi-invariant metrics on a
Lie group, G, and Ad-invariant inner products on the Lie algebra, g, of G, that is, inner
products, �−,−�, on g such that Ada is an isometry of g for all a ∈ G; more explicitly, inner
products such that

�Adau,Adav� = �u, v�,
for all a ∈ G and all u, v ∈ g.

Proof . If �−,−� is a bi-invariant metric on G, as

Ada = (dRa−1)a ◦ (dLa)e.

it is clear that Ada is an isometry on g.

Conversely, if �−,−� is any inner product on g such that Ada is an isometry of g for all
a ∈ G, we need to prove that the metric on G given by

�u, v�g = �(dLg−1)gu, (dLg−1)gv�

is also right-invariant. We have

�(dRa)bu, (dRa)bv�ba = �(dL(ba)−1)ba((dRa)bu), (dL(ba)−1)ba((dRa)bv)�
= �d(La−1 ◦ Lb−1 ◦Ra)bu, d(La−1 ◦ Lb−1 ◦Ra)bv�
= �d(Ra ◦ La−1 ◦ Lb−1)bu, d(Ra ◦ La−1 ◦ Lb−1)bv�
= �d(Ra ◦ La−1)e ◦ d(Lb−1)bu, d(Ra ◦ La−1)e ◦ d(Lb−1)bv�
= �Ada−1 ◦ d(Lb−1)bu,Ada−1 ◦ d(Lb−1)bv�
= �u, v�,

as �−,−� is left-invariant and Ag
g
-invariant for all g ∈ G.

Proposition 18.3 shows that if a Lie group, G, possesses a bi-invariant metric, then every
linear map, Ada, is an orthogonal transformation of g. It follows that Ad(G) is a subgroup
of the orthogonal group of g and so, its closure, Ad(G), is compact. It turns out that this
condition is also sufficient!
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To prove the above fact, we make use of an “averaging trick” used in representation theory.
Recall that a representation of a Lie group, G, is a (smooth) homomorphism, ρ : G → GL(V ),
where V is some finite-dimensional vector space. For any g ∈ G and any u ∈ V , we often
write g · u for ρ(g)(u). We say that an inner-product, �−,−�, on V is G-invariant iff

�g · u, g · v� = �u, v�,

for all g ∈ G and all u, v ∈ V . If G is compact, then the “averaging trick”, also called
“Weyl’s unitarian trick”, yields the following important result:

Theorem 18.4 If G is a compact Lie group, then for every representation, ρ : G → GL(V ),
there is a G-invariant inner product on V .

Proof . Recall from Section 9.4 that as a Lie group is orientable, it has a left-invariant
volume form, ω, and for every continuous function, f , with compact support, we can define
the integral,

�
M
f =

�
G
fω. Furthermore, when G is compact, we may assume that our

integral is normalized so that
�
G
ω = 1 and in this case, our integral is both left and right

invariant. Now, given any inner product, �−,−� on V , set

��u, v�� =
�

G

�g · u, g · v�,

for all u, v ∈ V , where �g ·u, g ·v� denotes the function g �→ �g ·u, g ·v�. It is easily checked that
��−,−�� is an inner product on V . Furthermore, using the right-invariance of our integral
(that is,

�
G
f =

�
G
(Rh ◦ f), for all h ∈ G), we have

��h · u, h · v�� =

�

G

�g · (h · u), g · (h · v)�

=

�

G

�(gh) · u, (gh) · v�

=

�

G

�g · u, g · v�

= ��u, v��,

which shows that ��−,−�� is G-invariant.

Using Theorem 18.4, we can prove the following result giving a criterion for the existence
of a G-invariant inner product for any representation of a Lie group, G (see Sternberg [143],
Chapter 5, Theorem 5.2).

Theorem 18.5 Let ρ : G → GL(V ) be a (finite-dimensional) representation of a Lie group,
G. There is a G-invariant inner product on V iff ρ(G) is compact. In particular, if G is
compact, then there is a G-invariant inner product on V .
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Proof . If V has a G-invariant inner product on V , then each linear map, ρ(g), is an isometry,
so ρ(G) is a subgroup of the orthogonal group, O(V ), of V . As O(V ) is compact, ρ(G) is
also compact.

Conversely, assume that ρ(G) is compact. In this case, H = ρ(G) is a closed subgroup of
the lie group, GL(V ), so by Theorem 5.12, H is a compact Lie subgroup of GL(V ). Now, the
inclusion homomorphism, H �→ GL(V ), is a representation of H (f · u = f(u), for all f ∈ H
and all u ∈ V ), so by Theorem 18.4, there is an inner product on V which is H-invariant.
However, for any g ∈ G, if we write f = ρ(g) ∈ H, then we have

�g · u, g · v� = �f(u), f(v)� = �u, v�,

proving that �−,−� is G-invariant as well.

Applying Theorem 18.5 to the adjoint representation, Ad: G → GL(g), we get our second
criterion for the existence of a bi-invariant metric on a Lie group.

Proposition 18.6 Given any Lie group, G, an inner product, �−,−�, on g induces a bi-
invariant metric on G iff Ad(G) is compact. In particular, every compact Lie group has a
bi-invariant metric.

Proof . Proposition 18.3 is equivalent to the fact that G possesses a bi-invariant metric iff
there is some Ad-invariant inner product on g. By Theorem 18.5, there is some Ad-invariant
inner product on g iff Ad(G) is compact, which is the statement of our theorem.

Proposition 18.6 can be used to prove that certain Lie groups do not have a bi-invariant
metric. For example, Arsigny, Pennec and Ayache use Proposition 18.6 to give a short and
elegant proof of the fact that SE(n) does not have any bi-invariant metric for all n ≥ 1. As
noted by these authors, other proofs found in the literature are a lot more complicated and
only cover the case n = 3.

Recall the adjoint representation of g,

ad : g → gl(g),

given by ad = dAd1. Here is our third criterion for the existence of a bi-invariant metric on
a connected Lie group.

Proposition 18.7 If G is a connected Lie group, an inner product, �−,−�, on g induces
a bi-invariant metric on G iff the linear map, ad(u) : g → g, is skew-adjoint for all u ∈ g,
which means that

�ad(u)(v), w� = −�v, ad(u)(w)�
for all u, v, w ∈ g iff

�[x, y], z� = �x, [y, z]�
for all x, y, z ∈ g.



514 CHAPTER 18. METRICS AND CURVATURE ON LIE GROUPS

Proof . We follow Milnor [109], Lemma 7.2. By Proposition 18.3, an inner product on g
induces a bi-invariant metric on G iff Adg is an isometry for all g ∈ G. We know that
we can choose a small enough open subset, U , of g containing 0 so that exp: g → G is a
diffeomorphism from U to exp(U). For any g ∈ exp(U), there is a unique, u ∈ g, so that
g = exp(u). By Proposition 5.6,

Ad(g) = Ad(exp(u)) = ead(u).

Now, Ad(g) is an isometry iff Ad(g)−1 = Ad(g)∗, where Ad(g)∗ denotes the adjoint of Ad(g)
and we know that

Ad(g)−1 = e−ad(u) and Ad(g)∗ = ead(u)
∗
,

so we deduce that Ad(g)−1 = Ad(g)∗ iff

ad(u)∗ = −ad(u),

which means that ad(u) is skew-adjoint. Since a connected Lie group is generated by any
open subset containing the identity and since products of isometries are isometries, our
results holds for all g ∈ G.

The skew-adjointness of ad(u) means that

�ad(u)(v), w� = −�v, ad(u)(w)�

for all u, v, w ∈ g and since ad(u)(v) = [u, v] and [u, v] = −[v, u], we get

�[v, u], w� = �v, [u, w]�

which is the last claim of the proposition after renaming u, v, w as y, x, z.

It will be convenient to say that an inner product on g is bi-invariant iff every ad(u) is
skew-adjoint.

If G is a connected Lie group, then the existence of a bi-invariant metric on G places a
heavy restriction on its group structure as shown by the following result from Milnor’s paper
[109] (Lemma 7.5):

Theorem 18.8 A connected Lie group, G, admits a bi-invariant metric iff it is isomorphic
to the cartesian product of a compact group and a vector space (Rm, for some m ≥ 0).

A proof of Theorem 18.8 can be found in Milnor [109] (Lemma 7.4 and Lemma 7.5). The
proof uses the universal covering group and it is a bit involved. We will outline the structure
of the proof because it is really quite beautiful.

In a first step, it is shown that if G has a bi-invariant metric, then its Lie algebra, g, can
be written as an orthogonal coproduct

g = g1 ⊕ · · · ⊕ gk,

where each gi is either a simple ideal or a one-dimensional abelian ideal, that is, gi ∼= R.

First, a few definitions.



18.2. BI-INVARIANT METRICS 515

Definition 18.2 A subset, h, of a Lie algebra, g, is a Lie subalgebra iff it is a subspace of g
(as a vector space) and if it is closed under the bracket operation on g. A subalgebra, h, is
abelian iff [x, y] = 0 for all x, y ∈ h. An ideal in g is a Lie subalgebra, h, such that

[h, g] ∈ h, for all h ∈ h and all g ∈ g.

The center , Z(g), of a Lie algebra, g, is the set of all elements, u ∈ g, so that [u, v] = 0 for
all v ∈ g, or equivalently, so that ad(u) = 0. A Lie algebra, g, is simple iff it is non-abelian
and if it has no ideal other than (0) and g. A Lie algebra, g, is semisimple iff it has no
abelian ideal other than (0). A Lie group is simple (resp. semisimple) iff its Lie algebra is
simple (resp. semisimple)

Clearly, the trivial subalgebras (0) and g itself are ideals and the center is an abelian
ideal.

Note that, by definition, simple and semisimple Lie algebras are non-abelian and a simple
algebra is a semisimple algebra. It turns out that a Lie algebra, g, is semisimple iff it can
be expressed as a direct sum of ideals, gi, with each gi a simple algebra (see Knapp [89],
Chapter I, Theorem 1.54). If we drop the requirement that a simple Lie algebra be non-
abelian, thereby allowing one dimensional Lie algebras to be simple, we run into the trouble
that a simple Lie algebra is no longer semisimple and the above theorem fails for this stupid
reason. Thus, it seems technically advantageous to require that simple Lie algebras be
non-abelian.

Nevertheless, in certain situations, it is desirable to drop the requirement that a simple Lie
algebra be non-abelian and this is what Milnor does in his paper because it is more convenient
for one of his proofs. This is a minor point but it could be confusing for uninitiated readers.

The next step is to lift the ideals, gi, to the simply connected normal subgroups, Gi,
of the universal covering group, �G, of g. For every simple ideal, gi, in the decomposition
it is proved that there is some constant, ci > 0, so that all Ricci curvatures are strictly
positive and bounded from below by ci. Therefore, by Myers’ Theorem (Theorem 13.28), Gi

is compact. It follows that �G is isomorphic to a product of compact simple Lie groups and
some vector space, Rm. Finally, we know that G is isomorphic to the quotient of �G by a
discrete normal subgroup of �G, which yields our theorem.

Because it is a fun proof, we prove the statement about the structure of a Lie algebra for
which each ad(u) is skew-adjoint.

Proposition 18.9 Let g be a Lie algebra with an inner product such that the linear map,
ad(u), is skew-adjoint for every u ∈ g. The orthogonal complement, a⊥, of any ideal, a, is
itself an ideal. Consequently, g can be expressed as an orthogonal direct sum

g = g1 ⊕ · · · ⊕ gk,

where each gi is either a simple ideal or a one-dimensional abelian ideal, that is, gi ∼= R.
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Proof . Assume u ∈ g is orthogonal to a. We need to prove that [u, v] is orthogonal to a for
all v ∈ g. But, as ad(u) is skew-adjoint, ad(u)(v) = [u, v], and a is an ideal, we have

�[u, v], a� = −�u, [v, a]� = 0, for all a ∈ a,

which shows that a⊥ is an ideal.

For the second statement, we use induction on the dimension of g but for this proof, we
redefine a simple Lie algebra to be an algebra with no nontrivial proper ideals . The case
where dim g = 1 is clear.

For the induction step, if g is simple, we are done. Else, g has some nontrivial proper
ideal, h, and if we pick h of minimal dimension, p, with 1 ≤ p < n = dim g, then h is simple.
Now, h⊥ is also an ideal and dim h⊥ < n, so the induction hypothesis applies. Therefore, we
have an orthogonal direct sum

g = g1 ⊕ · · · ⊕ gk,

where each gi is simple in our relaxed sense. However, if gi is not abelian, then it is simple
in the usual sense and if gi is abelian, having no proper nontrivial ideal, it must be one-
dimensional and we get our decomposition.

We now investigate connections and curvature on Lie groups with a left-invariant metric.

18.3 Connections and Curvature of Left-Invariant
Metrics on Lie Groups

If G is a Lie group equipped with a left-invariant metric, then it is possible to express the
Levi-Civita connection and the sectional curvature in terms of quantities defined over the
Lie algebra of G, at least for left-invariant vector fields. When the metric is bi-invariant,
much nicer formulae can be obtained.

If �−,−� is a left-invariant metric on G, then for any two left-invariant vector fields,
X, Y , we have

�X, Y �g = �X(g), Y (g)�g = �(dLg)eX(e), (dLg)eY (e)�e = �Xe, Ye�e = �X, Y �e,

which shows that the function, g �→ �X, Y �g, is constant. Therefore, for any vector field, Z,

Z(�X, Y �) = 0.

If we go back to the Koszul formula (Proposition 11.18)

2�∇XY, Z� = X(�Y, Z�) + Y (�X,Z�)− Z(�X, Y �)
− �Y, [X,Z]� − �X, [Y, Z]� − �Z, [Y,X]�,
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we deduce that for all left-invariant vector fields, X, Y, Z, we have

2�∇XY, Z� = −�Y, [X,Z]� − �X, [Y, Z]� − �Z, [Y,X]�,

which can be rewritten as

2�∇XY, Z� = �[X, Y ], Z� − �[Y, Z], X�+ �[Z,X], Y �. (†)

The above yields the formula

∇uv =
1

2
([u, v]− ad(u)∗v − ad(v)∗u) , u, v ∈ g,

where ad(x)∗ denotes the adjoint of ad(x).

Following Milnor, if we pick an orthonormal basis, (e1, . . . , en), w.r.t. our inner product
on g and if we define the constants, αijk, by

αijk = �[ei, ej], ek�,

we see that

∇eiej =
1

2

�

k

(αijk − αjki + αkij)ek. (∗)

Now, for orthonormal vectors, u, v, the sectional curvature is given by

K(u, v) = �R(u, v)u, v�,

with
R(u, v) = ∇[u,v] −∇u∇v +∇v∇u.

If we plug the expressions from equation (∗) into the defintions we obtain the following
proposition from Milnor [109] (Lemma 1.1):

Proposition 18.10 Given a Lie group, G, equipped with a left-invariant metric, for any
orthonormal basis, (e1, . . . , en), of g and with the structure constants, αijk = �[ei, ej], ek�, the
sectional curvature, K(e1, e2), is given by

K(e1, e2) =
�

k

1

2
(α12k(−α12k + α2k1 + αk12)

−1

4
(α12k − α2k1 + αk12)(α12k + α2k1 − αk12)− αk11αk22).

Although the above formula is not too useful in general, in some cases of interest, a great
deal of cancellation takes place so that a more useful formula can be obtained. An example
of this situation is provided by the next proposition (Milnor [109], Lemma 1.2).
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Proposition 18.11 Given a Lie group, G, equipped with a left-invariant metric, for any
u ∈ g, if the linear map, ad(u), is self-adjoint then

K(u, v) ≥ 0

for all v ∈ g, where equality holds iff u is orthogonal to [v, g] = {[v, x] | x ∈ g}.

Proof . We may asssume that u and v are orthonormal. If we pick an orthonormal basis such
that e1 = u and e2 = v, the fact that ad(e1) is skew-adjoint means that the array (α1jk) is
skew-symmetric (in the indices j and k). It follows that the formula of Proposition 18.10
reduces to

K(e1, e2) =
1

4

�

k

α2
2k1,

so K(e1, e2) ≥ 0, as claimed. Furthermore, K(e1, e2) = 0 iff α2k1 = 0 for k = 1, . . . , n, that
is �[e2, ek], e1� = 0 for k = 1, . . . , n, which means that e1 is orthogonal to [e2, g].

Proposition 18.12 Given a Lie group, G, equipped with a left-invariant metric, for any u
in the center, Z(g), of g,

K(u, v) ≥ 0

for all v ∈ g.

Proof . For any element, u, in the center of g, we have ad(u) = 0, and the zero map is
obviously skew-adjoint.

Recall that the Ricci curvature, Ric(u, v), is the trace of the linear map, y �→ R(u, y)v.
With respect to any orthonormal basis, (e1, . . . , en), of g, we have

Ric(u, v) =
n�

j=1

�R(u, ej)v, ej� =
n�

j=1

R(u, ej, v, ej).

The Ricci curvature is a symmetric form, so it is completely determined by the quadratic
form

r(u) = Ric(u, u) =
n�

j=1

R(u, ej, u, ej).

When u is a unit vector, r(u) is called the Ricci curvature in the direction u. If we pick an
orthonormal basis such that e1 = u, then

r(e1) =
n�

i=2

K(e1, ei).

For computational purposes it may be more convenient to introduce the Ricci transformation,
�r, defined by

�r(x) =
n�

i=1

R(ei, x)ei.



18.3. CONNECTIONS AND CURVATURE OF LEFT-INVARIANT METRICS 519

The Ricci transformation is self-adjoint and it is also the unique map so that

r(x) = ��r(x), x�, for all x ∈ g.

The eigenvalues of �r are called the principal Ricci curvatures .

Proposition 18.13 Given a Lie group, G, equipped with a left-invariant metric, if the linear
map, ad(u), is skew-adjoint, then r(u) ≥ 0, where equality holds iff u is orthogonal to the
commutator ideal, [g, g].

Proof . This follows from Proposition 18.11.

In particular, if u is in the center of g, then r(u) ≥ 0.

As a corollary of Proposition 18.13, we have the following result which is used in the
proof of Theorem 18.8:

Proposition 18.14 If G is a connected Lie group equipped with a bi-invariant metric and
if the Lie algebra of G is simple, then there is a constant, c > 0, so that r(u) ≥ c for all unit
vector, u ∈ TgG, for all g ∈ G.

Proof . First of all, the linear maps, ad(u), are skew-adjoint for all u ∈ g, which implies that
r(u) ≥ 0. As g is simple, the commutator ideal, [g, g] is either (0) or g. But, if [g, g] = (0),
then then g is abelian, which is impossible since g is simple. Therefore [g, g] = g, which
implies r(u) > 0 for all u �= 0 (otherwise, u would be orthogonal to [g, g] = g, which is
impossible). As the set of unit vectors in g is compact, the function, u �→ r(u), achieves it
minimum, c, and c > 0 as r(u) > 0 for all u �= 0. But, dLg : g → TgG is an isometry for all
g ∈ G, so r(u) ≥ c for all unit vectors, u ∈ TgG, for all g ∈ G.

By Myers’ Theorem (Theorem 13.28), the Lie group G is compact and has a finite fun-
damental group.

The following interesting theorem is proved in Milnor (Milnor [109], Theorem 2.2):

Theorem 18.15 A connected Lie group, G, admits a left-invariant metric with r(u) > 0
for all unit vectors u ∈ g (all Ricci curvatures are strictly positive) iff G is compact and has
finite fundamental group.

The following criterion for obtaining a direction of negative curvature is also proved in
Milnor (Milnor [109], Lemma 2.3):

Proposition 18.16 Given a Lie group, G, equipped with a left-invariant metric, if u is
orthogonal to the commutator ideal, [g, g], then r(u) ≤ 0, where equality holds iff ad(u) is
self-adjoint.
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When G possesses a bi-invariant metric, much nicer formulae are obtained. First of all,
as

�[u, v], w� = �u, [v, w]�,
the last two terms in equation (†) cancel out and we get

∇uv =
1

2
[u, v],

for all u, v ∈ g. Then, we get

R(u, v) =
1

2
ad([u, v])− 1

4
ad(u)ad(v) +

1

4
ad(v)ad(u).

Using the Jacobi identity,

ad([u, v]) = ad(u)ad(v)− ad(v)ad(u),

we get

R(u, v) =
1

4
ad[u, v],

so

R(u, v)w =
1

4
[[u, v], w].

Hence, for unit orthogonal vectors, u, v, the sectional curvature, K(u, v) = �R(u, v)u, v�, is
given by

K(u, v) =
1

4
�[[u, v], u], v�,

which (as �[x, y], z� = �x, [y, z]�) is rewritten as

K(u, v) =
1

4
�[u, v], [u, v]�.

To compute the Ricci curvature, Ric(u, v), we observe that Ric(u, v) is the trace of the linear
map,

y �→ R(u, y)v =
1

4
[[u, y], v] = −1

4
[v, [u, y]] = −1

4
ad(v) ◦ ad(u)(y).

However, the bilinear form, B, on g, given by

B(u, v) = tr(ad(u) ◦ ad(v))

is a famous object known as the Killing form of the Lie algebra g. We will take a closer
look at the Killing form shortly. For the time being, we observe that as tr(ad(u) ◦ ad(v)) =
tr(ad(v) ◦ ad(u)), we get

Ric(u, v) = −1

4
B(u, v),

for all u, v ∈ g.

We summarize all this in
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Proposition 18.17 For any Lie group, G, equipped with a left-invariant metric, the follow-
ing properties hold:

(a) The connection, ∇uv, is given by

∇uv =
1

2
[u, v], for all u, v ∈ g

(b) The curvature tensor, R(u, v), is given by

R(u, v) =
1

4
ad[u, v], for all u, v ∈ g,

or equivalently,

R(u, v)w =
1

4
[[u, v], w], for all u, v, w ∈ g.

(c) The sectional curvature, K(u, v), is given by

K(u, v) =
1

4
�[u, v], [u, v]�,

for all pairs of orthonormal vectors, u, v ∈ g.

(d) The Ricci curvature, Ric(u, v), is given by

Ric(u, v) = −1

4
B(u, v), for all u, v ∈ g,

where B is the Killing form, with

B(u, v) = tr(ad(u) ◦ ad(v)), for all u, v ∈ g.

Consequently, K(u, v) ≥ 0, with equality iff [u, v] = 0 and r(u) ≥ 0, with equality iff u
belongs to the center of g.

Remark: Proposition 18.17 shows that if a Lie group admits a bi-invariant metric, then its
Killing form is negative semi-definite.

What are the geodesics in a Lie group equipped with a bi-invariant metric? The answer
is simple: they are the integral curves of left-invariant vector fields.

Proposition 18.18 For any Lie group, G, equipped with a bi-invariant metric, we have:

(1) The inversion map, ι : g �→ g−1, is an isometry.
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(2) For every a ∈ G, if Ia denotes the map given by

Ia(b) = ab−1a, for all a, b ∈ G,

then Ia is an isometry fixing a which reverses geodesics, that is, for every geodesic, γ,
through a

Ia(γ)(t) = γ(−t).

(3) The geodesics through e are the integral curves, t �→ exp(tu), where u ∈ g, that is,
the one-parameter groups. Consequently, the Lie group exponential map, exp: g → G,
coincides with the Riemannian exponential map (at e) from TeG to G, where G is
viewed as a Riemannian manifold.

Proof . (1) Since

ι(g) = g−1 = g−1h−1h = (hg)−1h = (Rh ◦ ι ◦ Lh)(g),

we have
ι = Rh ◦ ι ◦ Lh, for all h ∈ G.

In particular, for h = g−1, we get

dιg = (dRg−1)e ◦ dιe ◦ (dLg−1)g.

As (dRg−1)e and d(Lg−1)g are isometries (since G has a bi-invariant metric), dιg is an isometry
iff dιe is. Thus, it remains to show that dιe is an isometry. However, dιe = −id, so dιg is an
isometry for all g ∈ G.

It remains to prove that dιe = −id. This can be done in several ways. If we denote the
multiplication of the group by µ : G×G → G, then Te(G×G) = TeG⊕ TeG = g⊕ g and it
is easy to see that

dµ(e,e)(u, v) = u+ v, for all u, v ∈ g.

This is because dµ(e,e) is a homomorphism and because g �→ µ(e, g) and g �→ µ(g, e) are the
identity map. As the map, g �→ µ(gι(g)), is the constant map with value e, by differentiating
and using the chain rule, we get

dιe(u) = −u,

as desired. (Another proof makes use of the fact that for every, u ∈ g, the integral curve, γ,
through e with γ�(0) = u is a group homomorphism. Therefore,

ι(γ(t)) = γ(t)−1 = γ(−t)

and by differentiating, we get dιe(u) = −u.)

(2) We follow Milnor [106] (Lemma 21.1). From (1), the map ι is an isometry so, by
Proposition 13.8 (3), it preserves geodesics through e. Since dιe reverses TeG = g, it reverses
geodesics through e. Observe that

Ia = Ra ◦ ι ◦Ra−1 ,
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so by (1), Ia is an isometry and obviously, Ia(a) = a. Again, by Proposition 13.8 (3), the
isometry Ia preserve geodesics, and since Ra and Ra−1 translate geodesics but ι reverses
geodesics, it follows that Ia reverses geodesics.

(3) We follow Milnor [106] (Lemma 21.2). Assume γ is the unique geodesic through e
such that γ�(0) = u, and let X be the left invariant vector field such that X(e) = u. The
first step is to prove that γ has domain R and that it is a group homomorphism, that is,

γ(s+ t) = γ(s)γ(t).

Details of this argument are given in Milnor [106] (Lemma 20.1 and Lemma 21.2) and in
Gallot, Hulin and Lafontaine [60] (Appendix B, Solution of Exercise 2.90). We present
Milnor’s proof.

Claim. The isometries, Ia, have the following property: For every geodesic, γ, through
a, if we let p = γ(0) and q = γ(r), then

Iq ◦ Ip(γ(t)) = γ(t+ 2r),

whenever γ(t) and γ(t+ 2r) are defined.

Let α(t) = γ(t+r). Then, α is a geodesic with α(0) = q. As Ip reverses geodesics through
p (and similarly for Iq), we get

Iq ◦ Ip(γ(t)) = Iq(γ(−t))

= Iq(α(−t− r))

= α(t+ r) = γ(t+ 2r).

It follows from the claim that γ can be indefinitely extended, that is, the domain of γ is R.

Next, we prove that γ is a homomorphism. By the Claim, Iγ(t) ◦ Ie takes γ(u) into
γ(u+ 2t). Now, by definition of Ia and Ie,

Iγ(t) ◦ Ie(a) = γ(t)aγ(t),

so, with a = γ(u), we get
γ(t)γ(u)γ(t) = γ(u+ 2t).

By induction, it follows that

γ(nt) = γ(t)n, for all n ∈ Z.

We now use the (usual) trick of approximating every real by a rational number. For all
r, s ∈ R with s �= 0, if r/s is rational, say r/s = m/n where m,n are integers, then r = mt
and s = nt with t = r/m = s/n and we get

γ(r + s) = γ(t)m+n = γ(t)mγ(t)n = γ(r)γ(s).
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Given any t1, t2 ∈ R with t2 �= 0, since t1 and t2 can be approximated by rationals r and s,
as r/s is rational, γ(r + s) = γ(r)γ(s), and by continuity, we get

γ(t1 + t2) = γ(t1)γ(t2),

as desired (the case t2 = 0 is trivial as γ(0) = e).

As γ is a homomorphism, by differentiating the equation γ(s+ t) = γ(s)γ(t), we get

d

dt
(γ(s+ t))|t=0 = (dLγ(s))e

�
d

dt
(γ(t))|t=0

�
,

that is
γ�(s) = (dLγ(s))e(γ

�(0)) = X(γ(s)),

which means that γ is the integral curve of the left-invariant vector field, X, a one-parameter
group.

Conversely, let c be the one-parameter group determined by a left-invariant vector field,
X, with X(e) = u and let γ be the unique geodesic through e such that γ�(0) = u. Since we
have just shown that γ is a homomorphism with γ�(0) = u, by uniqueness of one-parameter
groups, c = γ, that is, c is a geodesic.

Remarks:

(1) As Rg = ι ◦ Lg−1 ◦ ι, we deduce that if G has a left-invariant metric, then this metric
is also right-invariant iff ι is an isometry.

(2) Property (2) of Proposition 18.18 says that a Lie group with a bi-invariant metric
is a symmetric space, an important class of Riemannian spaces invented and studied
extensively by Elie Cartan.

(3) The proof of 18.18 (3) given in O’Neill [119] (Chapter 11, equivalence of (5) and (6) in
Proposition 9) appears to be missing the “hard direction”, namely, that a geodesic is
a one-parameter group. Also, since left and right translations are isometries and since
isometries map geodesics to geodesics, the geodesics through any point, a ∈ G, are the
left (or right) translates of the geodesics through e and thus, are expressed in terms of
the group exponential. Therefore, the geodesics through a ∈ G are of the form

γ(t) = La(exp(tu)),

where u ∈ g. Observe that γ�(0) = (dLa)e(u).

(4) Some of the other facts stated in Proposition 18.17 and Proposition 18.18 are equivalent
to the fact that a left-invariant metric is also bi-invariant, see O’Neill [119] (Chapter
11, Proposition 9).
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Many more interesting results about left-invariant metrics on Lie groups can be found in
Milnor’s paper [109]. For example, flat left-invariant metrics on Lie a group are characterized
(Theorem 1.5). We conclude this section by stating the following proposition (Milnor [109],
Lemma 7.6):

Proposition 18.19 If G is any compact, simple, Lie group, G, then the bi-invariant metric
is unique up to a constant. Such a metric necessarily has constant Ricci curvature.

18.4 The Killing Form

The Killing form showed the tip of its nose in Proposition 18.17. It is an important concept
and, in this section, we establish some of its main properties. First, we recall its definition.

Definition 18.3 For any Lie algebra, g, the Killing form, B, of g is the symmetric bilinear
form, B : g× g → R, given by

B(u, v) = tr(ad(u) ◦ ad(v)), for all u, v ∈ g.

If g is the Lie algebra of a Lie group, G, we also refer to B as the Killing form of G.

Remark: According to the experts (see Knapp [89], page 754) the Killing form as above
was not defined by Killing and is closer to a variant due to Elie Cartan. On the other hand,
the notion of “Cartan matrix” is due to Wilhelm Killing!

For example, consider the group SU(2). Its Lie algebra, su(2), consists of all skew-
Hermitian 2× 2 matrices with zero trace, that is matrices of the form

�
ai b+ ic

−b+ ic −ai

�
, a, b, c ∈ R,

a three-dimensional algebra. By picking a suitable basis of su(2), it can be shown that

B(X, Y ) = 4tr(XY ).

Now, if we consider the group U(2), its Lie algebra, u(2), consists of all skew-Hermitian 2×2
matrices, that is matrices of the form

�
ai b+ ic

−b+ ic id

�
, a, b, c, d ∈ R,

a four-dimensional algebra. This time, it can be shown that

B(X, Y ) = 4tr(XY )− 2tr(X)tr(Y ).
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For SO(3), we know that so(3) = su(2) and we get

B(X, Y ) = tr(XY ).

Actually, it can be shown that

U(n) : B(X, Y ) = 2ntr(XY )− 2tr(X)tr(Y )

SU(n) : B(X, Y ) = 2ntr(XY )

SO(n) : B(X, Y ) = (n− 2)tr(XY ).

Recall that a homomorphism of Lie algebras, ϕ : g → h, is a linear map that preserves
brackets, that is,

ϕ([u, v]) = [ϕ(u), ϕ(v)].

Proposition 18.20 The Killing form, B, of a Lie algebra, g, has the following properties:

(1) It is a symmetric bilinear form invariant under all automorphisms of g. In particular,
if g is the Lie algebra of a Lie group, G, then B is Adg-invariant, for all g ∈ G.

(2) The linear map, ad(u), is skew-adjoint w.r.t B for all u ∈ g, that is

B(ad(u)(v), w) = −B(v, ad(u)(w)), for all u, v, w ∈ g

or, equivalently

B([u, v], w) = B(u, [v, w]), for all u, v, w ∈ g.

Proof . (1) The form B is clearly bilinear and as tr(AB) = tr(BA), it is symmetric. If ϕ is
an automorphism of g, the preservation of the bracket implies that

ad(ϕ(u)) ◦ ϕ = ϕ ◦ ad(u),

so
ad(ϕ(u)) = ϕ ◦ ad(u) ◦ ϕ−1.

From tr(XY ) = tr(Y X), we get tr(A) = tr(BAB−1), so we get

B(ϕ(u), ϕ(v)) = tr(ad(ϕ(u)) ◦ ad(ϕ(v))
= tr(ϕ ◦ ad(u) ◦ ϕ−1 ◦ ϕ ◦ ad(v) ◦ ϕ−1)

= tr(ad(u) ◦ ad(v)) = B(u, v).

Since Adg is an automorphism of g for all g ∈ G, B is Adg-invariant.

(2) We have

B(ad(u)(v), w) = B([u, v], w) = tr(ad([u, v]) ◦ ad(w))
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and
B(v, ad(u)(w)) = B(v, [u, w]) = tr(ad(v) ◦ ad([u, w])).

However, the Jacobi identity is equivalent to

ad([u, v]) = ad(u) ◦ ad(v)− ad(v) ◦ ad(u).

Consequently,

tr(ad([u, v]) ◦ ad(w)) = tr((ad(u) ◦ ad(v)− ad(v) ◦ ad(u)) ◦ ad(w))
= tr(ad(u) ◦ ad(v) ◦ ad(w))− tr(ad(v) ◦ ad(u) ◦ ad(w))

and

tr(ad(v) ◦ ad([u, w])) = tr(ad(v) ◦ (ad(u) ◦ ad(w)− ad(w) ◦ ad(u)))
= tr(ad(v) ◦ ad(u) ◦ ad(w))− tr(ad(v) ◦ ad(w) ◦ ad(u)).

As
tr(ad(u) ◦ ad(v) ◦ ad(w)) = tr(ad(v) ◦ ad(w) ◦ ad(u)),

we deduce that

B(ad(u)(v), w) = tr(ad([u, v]) ◦ ad(w)) = −tr(ad(v) ◦ ad([u, w])) = −B(v, ad(u)(w)),

as claimed.

Remarkably, the Killing form yields a simple criterion due to Elie Cartan for testing
whether a Lie algebra is semisimple.

Theorem 18.21 (Cartan’s Criterion for Semisimplicity) A lie algebra, g, is semisimple iff
its Killing form, B, is non-degenerate.

As far as we know, all the known proofs of Cartan’s criterion are quite involved. A fairly
easy going proof can be found in Knapp [89] (Chapter 1, Theorem 1.45). A more concise
proof is given in Serre [136] (Chapter VI, Theorem 2.1). As a corollary of Theorem 18.21,
we get:

Proposition 18.22 If G is a semisimple Lie group, then the center of its Lie algebra is
trivial, that is, Z(g) = (0).

Proof . Since u ∈ g iff ad(u) = 0, we have

B(u, u) = tr(ad(u) ◦ ad(u)) = 0.

As B is nondegenerate, we must have u = 0.

Since a Lie group with trivial Lie algebra is discrete, this implies that the center of a
simple Lie group is discrete (because the Lie algebra of the center of a Lie group is the center
of its Lie algebra. Prove it!).

We can also characterize which Lie groups have a Killing form which is negative definite.
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Theorem 18.23 A connected Lie group is compact and semisimple iff its Killing form is
negative definite.

Proof . First, assume that G is compact and semisimple. Then, by Proposition 18.6, there
is an inner product on g inducing a bi-invariant metric on G and by Proposition 18.7, every
linear map, ad(u), is skew-adjoint. Therefore, if we pick an orthonormal basis of g, the
matrix, X, representing ad(u) is skew-symmetric and

B(u, u) = tr(ad(u) ◦ ad(u)) = tr(XX) =
n�

i,j=1

aijaji = −
n�

i,j=1

a2
ij
≤ 0.

Since G is semisimple, B is nondegenerate, and so, it is negative definite.

Now, assume that B is negative definite. If so, −B is an inner product on g and by
Proposition 18.20, it is Ad-invariant. By Proposition 18.3, the inner product −B induces a
bi-invariant metric on G and by Proposition 18.17 (d), the Ricci curvature is given by

Ric(u, v) = −1

4
B(u, v),

which shows that r(u) > 0 for all units vectors, u ∈ g. As in the proof of Proposition 18.14,
there is some constant, c > 0, which is a lower bound on all Ricci curvatures, r(u), and
by Myers’ Theorem (Theorem 13.28), G is compact (with finite fundamental group). By
Cartan’s Criterion, as B is non-degenerate, G is also semisimple.

Remark: A compact semisimple Lie group equipped with −B as a metric is an Einstein
manifold, since Ric is proportional to the metric (see Definition 13.5).

Using Theorem 18.23 and since the Killing forms for U(n), SU(n) and S)(n) are given
by

U(n) : B(X, Y ) = 2ntr(XY )− 2tr(X)tr(Y )

SU(n) : B(X, Y ) = 2ntr(XY )

SO(n) : B(X, Y ) = (n− 2)tr(XY ),

we see that SU(n) and SO(n) are compact and semisimple but U(n), even though it is
compact, is not semisimple.

Semisimple Lie algebras and semisimple Lie groups have been investigated extensively,
starting with the complete classification of the complex semisimple Lie algebras by Killing
(1888) and corrected by Elie Cartan in his thesis (1894). One should read the Notes, espe-
cially on Chapter II, at the end of Knapp’s book [89] for a fascinating account of the history
of the theory of semisimple Lie algebras.

The theories and the body of results that emerged from these investigations play a very
important role not only in mathematics but also in physics and constitute one of the most
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beautiful chapters of mathematics. A quick introduction to these theories can be found in
Arvanitoyeogos [8] and in Carter, Segal, Macdonald [31]. A more comprehensive but yet
still introductory presentation is given in Hall [70]. The most comprehensive treatment is
probably Knapp [89]. An older is classic is Helgason [73], which also discusses differential
geometric aspects of Lie groups. Other “advanced” presentations can be found in Bröcker
and tom Dieck [25], Serre [137, 136], Samelson [131], Humphreys [81] and Kirillov [86].
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Chapter 19

The Log-Euclidean Framework
Applied to SPD Matrices and
Polyaffine Transformations

19.1 Introduction

In this Chapter, we use what we have learned in previous chapters to describe an approach
due to Arsigny, Fillard, Pennec and Ayache to define a Lie group structure and a class of
metrics on symmetric, positive-definite matrices (SPD matrices) which yield a new notion
of mean on SPD matrices generalizing the standard notion of geometric mean.

SPD matrices are used in diffusion tensor magnetic resonance imaging (for short, DTI)
and they are also a basic tool in numerical analysis, for example, in the generation of meshes
to solve partial differential equations more efficiently.

As a consequence, there is a growing need to interpolate or to perform statistics on SPD
matrices, such as computing the mean of a finite number of SPD matrices.

Recall that the set of n × n SPD matrices, SPD(n), is not a vector space (because if
A ∈ SPD(n), then λA �∈ SPD(n) if λ < 0) but it is a convex cone. Thus, the arithmetic
mean of n SPD matrices, S1, . . . , Sn, can be defined as (S1 + · · · + Sn)/n, which is SPD.
However, there are many situations, especially in DTI, where this mean is not adequate.
There are essentially two problems:

(1) The arithmetic mean is not invariant under inversion, which means that if
S = (S1 + · · ·+ Sn)/n, then in general, S−1 �= (S−1

1 + · · ·+ S−1
n

)/n.

(2) The swelling effect: the determinant, det(S), of the mean, S, may be strictly larger
than the original determinants, det(Si). This effect is undesirable in DTI because it
amounts to introducing more diffusion, which is physically unacceptable.

531
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To circumvent these difficulties, various metrics on SPD matrices have been proposed.
One class of metrics is the affine-invariant metrics (see Arsigny, Pennec and Ayache [6]).
The swelling effect disappears and the new mean is invariant under inversion but computing
this new mean has a high computational cost and, in general, there is no closed-form formula
for this new kind of mean.

Arsigny, Fillard, Pennec and Ayache [5] have defined a new family of metrics on SPD(n)
named Log-Euclidean metrics and have also defined a novel structure of Lie group on SPD(n)
which yields a notion of mean that has the same advantages as the affine mean but is a lot
cheaper to compute. Furthermore, this new mean, called Log-Euclidean mean, is given by a
simple closed-form formula. We will refer to this approach as the Log-Euclidean Framework .

The key point behind the Log-Euclidean Framework is the fact that the exponential map,
exp: S(n) → SPD(n), is a bijection, where S(n) is the space of n × n symmetric matrices
(see Gallier [58], Chapter 14, Lemma 14.3.1). Consequently, the exponential map has a
well-defined inverse, the logarithm, log : SPD(n) → S(n).

But more is true. It turns out that exp: S(n) → SPD(n) is a diffeomorphism, a fact
stated as Theorem 2.8 in Arsigny, Fillard, Pennec and Ayache [5].

Since exp is a bijection, the above result follows from the fact that exp is a local diffeomor-
phism on S(n), because d exp

S
is non-singular for all S ∈ S(n). In Arsigny, Fillard, Pennec

and Ayache [5], it is proved that the non-singularity of d exp
I
near 0, which is well-known,

“propagates” to the whole of S(n).

Actually, the non-singularity of d exp on S(n) is a consequence of a more general result
of some interest whose proof can be found in in Mmeimné and Testard [111], Chapter 3,
Theorem 3.8.4 (see also Bourbaki [22], Chapter III, Section 6.9, Proposition 17, and also
Theorem 6).

Let S(n) denote the set of all real matrices whose eigenvalues, λ+ iµ, lie in the horizontal
strip determined by the condition −π < µ < π. Then, we have the following theorem:

Theorem 19.1 The restriction of the exponential map to S(n) is a diffeomorphism of S(n)
onto its image, exp(S(n)). Furthermore, exp(S(n)) consists of all invertible matrices that
have no real negative eigenvalues; it is an open subset of GL(n,R); it contains the open ball,
B(I, 1) = {A ∈ GL(n,R) | �A− I� < 1}, for every norm � � on n × n matrices satisfying
the condition �AB� ≤ �A� �B�.

Part of the proof consists in showing that exp is a local diffeomorphism and for this, to
prove that d exp

X
is invertible for every X ∈ S(n). This requires finding an explicit formula

for the derivative of the exponential, which can be done.

With this preparation we are ready to present the natural Lie group structure on SPD(n)
introduced by Arsigny, Fillard, Pennec and Ayache [5] (see also Arsigny’s thesis [3]).
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19.2 A Lie-Group Structure on SPD(n)

Using the diffeomorphism, exp: S(n) → SPD(n), and its inverse, log : SPD(n) → S(n), an
abelian group structure can be defined on SPD(n) as follows:

Definition 19.1 For any two matrices, S1, S2 ∈ SPD(n), define the logarithmic product ,
S1 ⊙ S2, by

S1 ⊙ S2 = exp(log(S1) + log(S2)).

Obviously, the multiplication operation, ⊙, is commutative. The following proposition is
shown in Arsigny, Fillard, Pennec and Ayache [5] (Proposition 3.2):

Proposition 19.2 The set, SPD(n), with the binary operation, ⊙, is an abelian group with
identity, I, and with inverse operation the usual inverse of matrices. Whenever S1 and S2

commute, then S1 ⊙ S2 = S1S2 (the usual multiplication of matrices).

For the last statement, we need to show that if S1, S2 ∈ SPD(n) commute, then S1S2 is
also in SPD(n) and that log(S1) and log(S2) commute, which follows from the fact that if
two diagonalizable matrices commute, then they can be diagonalized over the same basis of
eigenvectors.

Actually, (SPD(n),⊙, I) is an abelian Lie group isomorphic to the vector space (also an
abelian Lie group!) S(n), as shown in Arsigny, Fillard, Pennec and Ayache [5] (Theorem 3.3
and Proposition 3.4):

Theorem 19.3 The abelian group, (SPD(n),⊙, I) is a Lie group isomorphic to its Lie
algebra, spd(n) = S(n). In particular, the Lie group exponential in SPD(n) is identical to
the usual exponential on S(n).

We now investigate bi-invariant metrics on the Lie group, SPD(n).

19.3 Log-Euclidean Metrics on SPD(n)

If G is a lie group, recall that we have the operations of left multiplication, La, and right
multiplication, Ra, given by

La(b) = ab, Ra(b) = ba,

for all a, b ∈ G. A Riemannian metric, �−,−�, on G is left-invariant iff dLa is an isometry
for all a ∈ G, that is,

�u, v�b = �(dLa)b(u), (dLa)b(v)�ab,
for all b ∈ G and all u, v ∈ TbG. Similarly, �−,−� is right-invariant iff dRa is an isometry for
all a ∈ G and �−,−� is bi-invariant iff it is both left and right invariant. In general, a Lie
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group does not admit a bi-invariant metric but an abelian Lie group always does because
Adg = id ∈ GL(g) for all g ∈ G and so, the adjoint representation, Ad: G → GL(g), is
trivial (that is, Ad(G) = {id}) and then, the existence of bi-invariant metrics is a consequence
of Proposition 18.3, which we repeat here for the convenience of the reader:

Proposition 19.4 There is a bijective correspondence between bi-invariant metrics on a
Lie group, G, and Ad-invariant inner products on the Lie algebra, g, of G, that is, inner
products, �−,−�, on g such that Ada is an isometry of g for all a ∈ G; more explicitly, inner
products such that

�Adau,Adav� = �u, v�,
for all a ∈ G and all u, v ∈ g.

Then, given any inner product, �−,−� on G, the induced bi-invariant metric on G is
given by

�u, v�g = �(dLg−1)gu, (dLg−1)gv�.

Now, the geodesics on a Lie group equipped with a bi-invariant metric are the left (or
right) translates of the geodesics through e and the geodesics through e are given by the
group exponential, as stated in Proposition 18.18 (3) which we repeat for the convenience of
the reader:

Proposition 19.5 For any Lie group, G, equipped with a bi-invariant metric, we have:

(1) The inversion map, ι : g �→ g−1, is an isometry.

(2) For every a ∈ G, if Ia denotes the map given by

Ia(b) = ab−1a, for all a, b ∈ G,

then Ia is an isometry fixing a which reverses geodesics, that is, for every geodesic, γ,
through a

Ia(γ)(t) = γ(−t).

(3) The geodesics through e are the integral curves, t �→ exp(tu), where u ∈ g, that is,
the one-parameter groups. Consequently, the Lie group exponential map, exp: g → G,
coincides with the Riemannian exponential map (at e) from TeG to G, where G is
viewed as a Riemannian manifold.

If we apply Proposition 19.5 to the abelian Lie group, SPD(n), we find that the geodesics
through S are of the form

γ(t) = S ⊙ etV ,

where V ∈ S(n). But S = elogS, so

S ⊙ etV = elogS ⊙ etV = elogS+tV ,
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so every geodesic through S is of the form

γ(t) = elogS+tV = exp(log S + tV ).

To avoid confusion between the exponential and the logarithm as Lie group maps and as
Riemannian manifold maps, we will denote the former by exp and log and their Riemannian
counterparts by Exp and Log. Note that

γ�(0) = d explogS(V )

and since the exponential map of SPD(n), as a Riemannian manifold, is given by

Exp
S
(U) = γU(1),

where γU is the unique geodesic such that γU(0) = S and γ�
U
(0) = U , we must have

d explogS(V ) = U , so V = (d explogS)
−1(U) and

Exp
S
(U) = elogS+V = elogS+(d explog S)

−1(U).

However, log ◦ exp = id so, by differentiation, we get

(d explogS)
−1(U) = d log

S
(U),

which yields
Exp

S
(U) = elogS+d logS(U).

To get a formula for Log
S
T , we solve the equation T = Exp

S
(U) with respect to U , that is

elogS+(d explog S)
−1(U) = T

which yields
logS + (d explogS)

−1(U) = log T,

that is, U = d explogS(log T − logS). Therefore,

Log
S
T = d explogS(log T − logS).

Finally, we can find an explicit formula for the Riemannian metric,

�U, V �S = �d(LS−1)S(U), d(LS−1)S(V )�,

because d(LS−1)S = d log
S
, which can be shown as follows: Observe that

(log ◦LS−1)(T ) = log S−1 + log T,

so d(log ◦LS−1)T = d log
T
, that is

d log
S−1⊙T

◦d(LS−1)T = d log
T
,
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which, for T = S, yields (dLS−1)S = d log
S
, since d log

I
= I. Therefore,

�U, V �S = �d log
S
(U), d log

S
(V )�.

Now, a Lie group with a bi-invariant metric is complete, so given any two matrices,
S, T ∈ SPD(n), their distance is the length of the geodesic segment, γV , such that γV (0) = S
and γV (1) = T , namely �V �, but V = log

S
T so that

d(S, T ) = �log
S
T�

S
,

where � �
S
is the norm given by the Riemannian metric. Using the equation

Log
S
T = d explogS(log T − logS),

and the fact that d log ◦d exp = id, we get

d(S, T ) = �log T − logS� ,

where � � is the norm corresponding to the inner product on spd(n) = S(n). Since �−,−� is
a bi-invariant metric on S(n) and since

�U, V �S = �d log
S
(U), d log

S
(V )�,

we see that the map, exp: S(n) → SPD(n), is an isometry (since d exp ◦d log = id).

In summary, we have proved Corollary 3.9 of Arsigny, Fillard, Pennec and Ayache [5]:

Theorem 19.6 For any inner product, �−,−�, on S(n), if we give the Lie group, SPD(n),
the bi-invariant metric induced by �−,−�, then the following properties hold:

(1) For any S ∈ SPD(n), the geodesics through S are of the form

γ(t) = elogS+tV , V ∈ S(n).

(2) The exponential and logarithm associated with the bi-invariant metric on SPD(n) are
given by

Exp
S
(U) = elogS+d logS(U)

Log
S
(T ) = d explogS(log T − logS),

for all S, T ∈ SPD(n) and all U ∈ S(n).

(3) The bi-invariant metric on SPD(n) is given by

�U, V �S = �d log
S
(U), d log

S
(V )�,

for all U, V ∈ S(n) and all S ∈ SPD(n) and the distance, d(S, T ), between any two
matrices, S, T ∈ SPD(n), is given by

d(S, T ) = �log T − logS� ,

where � � is the norm corresponding to the inner product on spd(n) = S(n).
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(4) The map, exp: S(n) → SPD(n), is an isometry.

In view of Theorem 19.6, part (3), bi-invariant metrics on the Lie group SPD(n) are
called Log-Euclidean metrics . Since exp: S(n) → SPD(n) is an isometry and S(n) is a
vector space, the Riemannian Lie group, SPD(n), is a complete, simply-connected and flat
manifold (the sectional curvature is zero at every point) that is, a flat Hadamard manifold
(see Sakai [130], Chapter V, Section 4).

Although, in general, Log-Euclidean metrics are not invariant under the action of ar-
bitary invertible matrices, they are invariant under similarity transformations (an isometry
composed with a scaling). Recall that GL(n) acts on SPD(n), via,

A · S = ASA�,

for all A ∈ GL(n) and all S ∈ SPD(n). We say that a Log-Euclidean metric is invariant
under A ∈ GL(n) iff

d(A · S,A · T ) = d(S, T ),

for all S, T ∈ SPD(n). The following result is proved in Arsigny, Fillard, Pennec and Ayache
[5] (Proposition 3.11):

Proposition 19.7 There exist metrics on S(n) that are invariant under all similarity trans-
formations, for example, the metric �S, T � = tr(ST ).

19.4 A Vector Space Structure on SPD(n)

The vector space structure on S(n) can also be transfered onto SPD(n).

Definition 19.2 For any matrix, S ∈ SPD(n), for any scalar, λ ∈ R, define the scalar
multiplication, λ� S, by

λ� S = exp(λ log(S)).

It is easy to check that (SPD(n),⊙,�) is a vector space with addition ⊙ and scalar
multiplication, �. By construction, the map, exp: S(n) → SPD(n), is a linear isomorphism.
What happens is that the vector space structure on S(n) is transfered onto SPD(n) via the
log and exp maps.

19.5 Log-Euclidean Means

One of the major advantages of Log-Euclidean metrics is that they yield a computationally
inexpensive notion of mean with many desirable properties. If (x1, . . . , xn) is a list of n data
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points in R
m, then it is an easy exercise to see that the mean, x = (x1 + · · ·+ xn)/n, is the

unique minimum of the map

x �→
n�

i=1

d(x, xi)
2
2,

where d2 is the Euclidean distance on R
m. We can think of the quantity,

n�

i=1

d(x, xi)
2
2,

as the dispersion of the data. More generally, if (X, d) is a metric space, for any α > 0
and any positive weights, w1, . . . , wn, with

�
n

i=1 wi = 1, we can consider the problem of
minimizing the function,

x �→
n�

i=1

wid(x, xi)
α.

The case α = 2 corresponds to a generalization of the notion of mean in a vector space and
was investigated by Fréchet. In this case, any minimizer of the above function is known as a
Fréchet mean. Fréchet means are not unique but if X is a complete Riemannian manifold,
certain sufficient conditions on the dispersion of the data are known that ensure the existence
and uniqueness of the Fréchet mean (see Pennec [120]). The case α = 1 corresponds to a
generalization of the notion of median. When the weights are all equal, the points that
minimize the map,

x �→
n�

i=1

d(x, xi),

are called Steiner points . On a Hadamard manifold, Steiner points can be characterized (see
Sakai [130], Chapter V, Section 4, Proposition 4.9).

In the case where X = SPD(n) and d is a Log-Euclidean metric, it turns out that the
Fréchet mean is unique and is given by a simple closed-form formula. This is easy to see
and we have the following theorem from Arsigny, Fillard, Pennec and Ayache [5] (Theorem
3.13):

Theorem 19.8 Given N matrices, S1, . . . , SN ∈ SPD(n), their Log-Euclidean Fréchet
mean exists and is uniquely determined by the formula

ELE(S1, . . . , SN) = exp

�
1

N

N�

i=1

log(Si)

�
.

Furthermore, the Log-Euclidean mean is similarity-invariant, invariant by group multiplica-
tion and inversion and exponential-invariant.
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Similarity-invariance means that for any similarity, A,

ELE(AS1A
�, . . . , ASNA

�) = AELE(S1, . . . , SN)A
�

and similarly for the other types of invariance.

Observe that the Log-Euclidean mean is a generalization of the notion of geometric mean.
Indeed, if x1, . . . , xn are n positive numbers, then their geometric mean is given by

Egeom(x1, . . . , xn) = (x1 · · · xn)
1
n = exp

�
1

n

n�

i=1

log(xi)

�
.

The Log-Euclidean mean also has a good behavior with respect to determinants. The
following theorem is proved in Arsigny, Fillard, Pennec and Ayache [5] (Theorem 4.2):

Theorem 19.9 Given N matrices, S1, . . . , SN ∈ SPD(n), we have

det(ELE(S1, . . . , SN)) = Egeom(det(S1), . . . , det(SN)).

Remark: The last line of the proof in Arsigny, Fillard, Pennec and Ayache [5] seems incor-
rect.

Arsigny, Fillard, Pennec and Ayache [5] also compare the Log-Euclidean mean with the
affine mean. We highly recommend the above paper as well as Arsigny’s thesis [3] for further
details.

Next, we discuss the application of the Log-Euclidean framework to the blending of locally
affine transformations, known as Log-Euclidean polyaffine transformations, as presented in
Arsigny, Commowick, Pennec and Ayache [4].

19.6 Log-Euclidean Polyaffine Transformations

The registration of medical images is an important and difficult problem. The work described
in Arsigny, Commowick, Pennec and Ayache [4] (and Arsigny’s thesis [3]) makes an orginal
and valuable contribution to this problem by describing a method for parametrizing a class
of non-rigid deformations with a small number of degrees of freedom. After a global affine
alignment, this sort of parametrization allows a finer local registration with very smooth
transformations. This type of parametrization is particularly well adpated to the registration
of histological slices, see Arsigny, Pennec and Ayache [6].

The goal is to fuse some affine or rigid transformations in such a way that the resulting
transformation is invertible and smooth. The direct approach which consists in blending N
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global affine or rigid transformations, T1, . . . , TN using weights, w1, . . . , wN , does not work
because the resulting transformation,

T =
N�

i=1

wiTi,

is not necessarily invertible. The purpose of the weights is to define the domain of influence
in space of each Ti.

The key idea is to associate to each rigid (or affine) transformation, T , of Rn, a vector
field, V , and to view T as the diffeomorphism, ΦV

1 , corresponding to the time t = 1, where
ΦV

t
is the global flow associated with V . In other words, T is the result of integrating an

ODE
X � = V (X, t),

starting with some initial condition, X0, and T = X(1).

Now, it would be highly desirable if the vector field, V , did not depend on the time
parameter, and this is indeed possible for a large class of affine transformations, which is one
of the nice contributions of the work of Arsigny, Commowick, Pennec and Ayache [4]. Recall
that an affine transformation, X �→ LX + v, (where L is an n × n matrix and X, v ∈ R

n)
can be conveniently represented as a linear transformation from R

n+1 to itself if we write
�
X

1

�
�→

�
L v
0 1

��
X

1

�
.

Then, the ODE with constant coefficients

X � = LX + v,

can be written �
X �

0

�
=

�
L v
0 0

��
X

1

�

and, for every initial condition, X = X0, its unique solution is given by
�
X(t)

1

�
= exp

�
t

�
L v
0 0

���
X0

1

�
.

Therefore, if we can find reasonable conditions on matrices, T =

�
M t
0 1

�
, to ensure that

they have a unique real logarithm,

log(T ) =

�
L v
0 0

�
,

then we will be able to associate a vector field, V (X) = LX + v, to T , in such a way that T
is recovered by integrating the ODE, X � = LX + v. Furthermore, given N transformations,
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T1, . . . , TN , such that log(T1), . . . , log(TN) are uniquely defined, we can fuse T1, . . . , TN at the
infinitesimal level by defining the ODE obtained by blending the vector fields, V1, . . . , VN ,
associated with T1, . . . , TN (with Vi(X) = LiX + vi), namely

V (X) =
N�

i=1

wi(X)(LiX + vi).

Then, it is easy to see that the ODE,

X � = V (X),

has a unique solution for every X = X0 defined for all t, and the fused transformation is just
T = X(1). Thus, the fused vector field,

V (X) =
N�

i=1

wi(X)(LiX + vi),

yields a one-parameter group of diffeomorphisms, Φt. Each transformation, Φt, is smooth
and invertible and is called a Log-Euclidean polyaffine tranformation, for short, LEPT . Of
course, we have the equation

Φs+t = Φs ◦ Φt,

for all s, t ∈ R so, in particular, the inverse of Φt is Φ−t. We can also interpret Φs as (Φ1)s,
which will yield a fast method for computing Φs. Observe that when the weight are scalars,
the one-parameter group is given by

�
Φt(X)

1

�
= exp

�
t

N�

i=1

wi

�
Li vi
0 0

���
X

1

�
,

which is the Log-Euclidean mean of the affine transformations, Ti’s (w.r.t. the weights wi).

Fortunately, there is a sufficient condition for a real matrix to have a unique real logarithm
and this condition is not too restrictive in practice.

Recall that S(n) denotes the set of all real matrices whose eigenvalues, λ+ iµ, lie in the
horizontal strip determined by the condition −π < µ < π. We have the following version of
Theorem 19.1:

Theorem 19.10 The image, exp(S(n)), of S(n) by the exponential map is the set of real
invertible matrices with no negative eigenvalues and exp: S(n) → exp(S(n)) is a bijection.

Theorem 19.10 is stated in Kenney and Laub [84] without proof. Instead, Kenney and
Laub cite DePrima and Johnson [41] for a proof but this latter paper deals with complex
matrices and does not contain a proof of our result either. The injectivity part of Theorem
19.10 can be found in Mmeimné and Testard [111], Chapter 3, Theorem 3.8.4.
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In fact, exp: S(n) → exp(S(n)) is a diffeomorphism, a result proved in Bourbaki [22],
see Chapter III, Section 6.9, Proposition 17 and Theorem 6. Curious readers should read
Gallier [59] for the full story.

For any matrix, A ∈ exp(S(n)), we refer to the unique matrix, X ∈ S(n), such that
eX = A, as the principal logarithm of A and we denote it as logA.

Observe that if T is an affine transformation given in matrix form by

T =

�
M t
0 1

�
,

since the eigenvalues of T are those of M plus the eigenvalue 1, the matrix T has no negative
eigenvalues iff M has no negative eigenvalues and thus the principal logarithm of T exists iff
the principal logarithm of M exists.

It is proved in Arsigny, Commowick, Pennec and Ayache that LEPT’s are affine invariant,
see [4], Section 2.3. This shows that LEPT’s are produced by a truly geometric kind of
blending, since the result does not depend at all on the choice of the coordinate system.

In the next section, we describe a fast method for computing due to Arsigny, Commowick,
Pennec and Ayache [4].

19.7 Fast Polyaffine Transforms

Recall that since LEPT’s are members of the one-parameter group, (Φt)t∈R, we have

Φ2t = Φt+t = Φ2
t

and thus,
Φ1 = (Φ1/2N )

2N .

Observe the formal analogy of the above formula with the formula

exp(M) = exp

�
M

2N

�2N

,

for computing the exponential of a matrix, M , by the scaling and squaring method .

It turns out that the “scaling and squaring method” is one of the most efficient methods
for computing the exponential of a matrix, see Kenney and Laub [84] and Higham [74]. The
key idea is that exp(M) is easy to compute if M is close zero since, in this case, one can use
a few terms of the exponential series, or better, a Padé approximant (see Higham [74]). The
scaling and squaring method for computing the exponential of a matrix, M , can be sketched
as follows:

1. Scaling Step: Divide M by a factor, 2N , so that M

2N is close enough to zero.
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2. Exponentiation step: Compute exp
�
M

2N

�
with high precision, for example, using a Padé

approximant.

3. Squaring Step: Square exp
�
M

2N

�
repeatedly N times to obtain exp

�
M

2N

�2N
, a very

accurate approximation of eM .

There is also a so-called inverse scaling and squaring method to compute efficiently the
principal logarithm of a real matrix, see Cheng, Higham, Kenney and Laub [32].

Arsigny, Commowick, Pennec and Ayache made the very astute observation that the
scaling and squaring method can be adpated to compute LEPT’s very efficiently [4]. This
method, called fast polyaffine transform, computes the values of a Log-Euclidean polyaffine
transformation, T = Φ1, at the vertices of a regular n-dimensional grid (in practice, for
n = 2 or n = 3). Recall that T is obtained by integrating an ODE, X � = V (X), where
the vector field, V , is obtained by blending the vector fields associated with some affine
transformations, T1, . . . , Tn, having a principal logarithm.

Here are the three steps of the fast polyaffine transform:

1. Scaling Step: Divide the vector field, V , by a factor, 2N , so that V

2N is close enough to
zero.

2. Exponentiation step: Compute Φ1/2N , using some adequate numerical integration
method.

3. Squaring Step: Compose Φ1/2N with itself recursively N times to obtain an accurate
approximation of T = Φ1.

Of course, one has to provide practical methods to achieve step 2 and step 3. Several
methods to achieve step 2 and step 3 are proposed in Arsigny, Commowick, Pennec and
Ayache [4]. One also has to worry about boundary effects, but this problem can be alleviated
too, using bounding boxes. At this point, the reader is urged to read the full paper [4] for
complete details and beautiful pictures illustrating the use of LEPT’s in medical imaging.

To conclude our survey of the Log-Euclidean polyaffine framework for locally affine reg-
istration, we briefly discuss how the Log-Euclidean framework can be generalized to rigid
and affine transformations.

19.8 A Log-Euclidean Framework for Transformations
in exp(S(n))

Arsigny, Commowick, Pennec and Ayache observed that if T1 and T2 are two affine transfor-
mations in exp(S(n)), then we can define their distance as

d(T1, T2) = �log(T1)− log(T2)� ,
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where � � is any norm on n× n matrices (see [4], Appendix A.1). We can go a little further
and make S(n) and exp(S(n)) into Riemannian manifolds in such a way that the exponential
map, exp: S(n) → exp(S(n)), is an isometry.

Since S(n) is an open subset of the vector space, M(n,R), of all n × n real matrices,
S(n) is a manifold, and since exp(S(n)) is an open subset of the manifold, GL(n,R),
it is also a manifold. Obviously, TLS(n) ∼= M(n,R) and TS exp(S(n)) ∼= M(n,R), for
all L ∈ S(n) and all S ∈ exp(S(n)) and the maps, d exp

L
: TLS(n) → Texp(L) exp(S(n))

and d log
S
: TS exp(S(n)) → Tlog(S)S(n), are linear isomorphisms. We can make S(n) into

a Riemannian manifold by giving it the induced metric induced by any norm, � �, on
M(n,R), and make exp(S(n)) into a Riemannian manifold by defining the metric, �−,−�S,
on TS exp(S(n)), by

�A,B�S = �d log
S
(A)− d log

S
(B)� ,

for all S ∈ exp(S(n)) and all A,B ∈ M(n,R). Then, it is easy to check that
exp: S(n) → exp(S(n)) is indeed an isometry and, as a consequence, the Riemannian dis-
tance between two matrices, T1, T2 ∈ exp(S(n)), is given by

d(T1, T2) = �log(T1)− log(T2)� ,

again called the Log-Euclidean distance.

Since every affine transformation, T , can be represented in matrix form as

T =

�
M t
0 1

�
,

and, as we saw in section 19.6, since the principal logarithm of T exists iff the principal
logarithm of M exists, we can view the set of affine transformations that have a principal
logarithm as a subset of exp(S(n+ 1)).

Unfortunately, this time, even though they are both flat, S(n) and exp(S(n)) are not
complete manifolds and so, the Fréchet mean of N matrices, T1, . . . , Tn ∈ exp(S(n)), may
not exist.

However, recall that from Theorem 19.1 that the open ball,

B(I, 1) = {A ∈ GL(n,R) | �A− I�� < 1},

is contained in exp(S(n)) for any norm, � ��, on matrices (not necessarily equal to the norm
defining the Riemannian metric on S(n)) such that �AB�� ≤ �A�� �B�� so, for any matrices
T1, . . . , Tn ∈ B(I, 1), the Fréchet mean is well defined and is uniquely determined by

ELE(T1, . . . , TN) = exp

�
1

N

N�

i=1

log(Ti)

�
,

namely, it is their Log-Euclidean mean.
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From a practical point of view, one only needs to ckeck that the eigenvalues, ξ, of
1
N

�
N

i=1 log(Ti) are in the horizontal strip, −π < �(ξ) < π.

Provided that ELE(T1, . . . , TN) is defined, it is easy to show, as in the case of SPD
matrices, that det(ELE(T1, . . . , TN)) is the geometric mean of the determinants of the Ti’s.

The Riemannian distance on exp(S(n)) is not affine invariant but it is invariant under
inversion, under rescaling by a positive scalar, and under rotation for certain norms on
S(n) (see [4], Appendix A.2). However, the Log-Euclidean mean of matrices in exp(S(n))
is invariant under conjugation by any matrix, A ∈ GL(n,R), since ASA−1 ∈ exp(S(n)) for
any S ∈ exp(S(n)) and since log(ASA−1) = A log(S)A−1. In particular, the Log-Euclidean
mean of affine transformations in exp(S(n+1)) is invariant under arbitrary invertible affine
transformations (again, see [4], Appendix A.2).

For more details on the Log-Euclidean framework for locally rigid or affine deformation,
for example, about regularization, the reader should read Arsigny, Commowick, Pennec and
Ayache [4].
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Chapter 20

Fréchet Mean and Statistics on
Riemannian Manifolds; Applications
to Medical Image Analysis
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Chapter 21

Clifford Algebras, Clifford Groups,
and the Groups Pin(n) and Spin(n)

21.1 Introduction: Rotations As Group Actions

The main goal of this chapter is to explain how rotations in R
n are induced by the action of

a certain group, Spin(n), on R
n, in a way that generalizes the action of the unit complex

numbers, U(1), on R
2, and the action of the unit quaternions, SU(2), on R

3 (i.e., the action
is defined in terms of multiplication in a larger algebra containing both the group Spin(n)
and R

n). The group Spin(n), called a spinor group, is defined as a certain subgroup of units
of an algebra, Cln, the Clifford algebra associated with R

n. Furthermore, for n ≥ 3, we are
lucky, because the group Spin(n) is topologically simpler than the group SO(n). Indeed, for
n ≥ 3, the group Spin(n) is simply connected (a fact that it not so easy to prove without
some machinery), whereas SO(n) is not simply connected. Intuitively speaking, SO(n) is
more twisted than Spin(n). In fact, we will see that Spin(n) is a double cover of SO(n).

Since the spinor groups are certain well chosen subroups of units of Clifford algebras, it is
necessary to investigate Clifford algebras to get a firm understanding of spinor groups. This
chapter provides a tutorial on Clifford algebra and the groups Spin and Pin, including a
study of the structure of the Clifford algebra Clp,q associated with a nondegenerate symmetric
bilinear form of signature (p, q) and culminating in the beautiful “8-periodicity theorem” of
Elie Cartan and Raoul Bott (with proofs). We also explain when Spin(p, q) is a double-
cover of SO(p, q). The reader should be warned that a certain amount of algebraic (and
topological) background is expected. This being said, perseverant readers will be rewarded
by being exposed to some beautiful and nontrivial concepts and results, including Elie Cartan
and Raoul Bott “8-periodicity theorem.”

Going back to rotations as transformations induced by group actions, recall that if V is
a vector space, a linear action (on the left) of a group G on V is a map, α : G × V → V ,
satisfying the following conditions, where, for simplicity of notation, we denote α(g, v) by
g · v:

549
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(1) g · (h · v) = (gh) · v, for all g, h ∈ G and v ∈ V ;

(2) 1 · v = v, for all v ∈ V , where 1 is the identity of the group G;

(3) The map v �→ g · v is a linear isomorphism of V for every g ∈ G.

For example, the (multiplicative) group, U(1), of unit complex numbers acts on R
2 (by

identifying R
2 and C) via complex multiplication: For every z = a + ib (with a2 + b2 = 1),

for every (x, y) ∈ R
2 (viewing (x, y) as the complex number x+ iy),

z · (x, y) = (ax− by, ay + bx).

Now, every unit complex number is of the form cos θ + i sin θ, and thus, the above action of
z = cos θ+ i sin θ on R

2 corresponds to the rotation of angle θ around the origin. In the case
n = 2, the groups U(1) and SO(2) are isomorphic, but this is an exception.

We can define an action of the group of unit quaternions, SU(2), on R
3. For this, we use

the fact that R3 can be identified with the pure quaternions in H, namely, the quaternions
of the form x1i + x2j + x3k, where (x1, x2, x3) ∈ R

3. Then, we define the action of SU(2)
over R3 by

Z ·X = ZXZ−1 = ZXZ,

where Z ∈ SU(2) and X is any pure quaternion. Now, it turns out that the map ρZ (where
ρZ(X) = ZXZ) is indeed a rotation, and that the map ρ : Z �→ ρZ is a surjective homomor-
phism, ρ : SU(2) → SO(3), whose kernel is {−1,1}, where 1 denotes the multiplicative unit
quaternion. (For details, see Gallier [58], Chapter 8).

We can also define an action of the group SU(2)×SU(2) over R4, by identifying R
4 with

the quaternions. In this case,
(Y, Z) ·X = Y XZ,

where (Y, Z) ∈ SU(2)×SU(2) andX ∈ H is any quaternion. Then, the map ρ
Y,Z

is a rotation

(where ρ
Y,Z

(X) = Y XZ), and the map ρ : (Y, Z) �→ ρ
Y,Z

is a surjective homomorphism,
ρ : SU(2) × SU(2) → SO(4), whose kernel is {(1,1), (−1,−1)}. (For details, see Gallier
[58], Chapter 8).

Thus, we observe that for n = 2, 3, 4, the rotations in SO(n) can be realized via the
linear action of some group (the case n = 1 is trivial, since SO(1) = {1,−1}). It is also the
case that the action of each group can be somehow be described in terms of multiplication in
some larger algebra “containing” the original vector space R

n (C for n = 2, H for n = 3, 4).
However, these groups appear to have been discovered in an ad hoc fashion, and there does
not appear to be any universal way to define the action of these groups on R

n. It would
certainly be nice if the action was always of the form

Z ·X = ZXZ−1(= ZXZ).

A systematic way of constructing groups realizing rotations in terms of linear action, using
a uniform notion of action, does exist. Such groups are the spinor groups, to be described
in the following sections.
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21.2 Clifford Algebras

We explained in Section 21.1 how the rotations in SO(3) can be realized by the linear action
of the group of unit quaternions, SU(2), on R

3, and how the rotations in SO(4) can be
realized by the linear action of the group SU(2)× SU(2) on R

4.

The main reasons why the rotations in SO(3) can be represented by unit quaternions are
the following:

(1) For every nonzero vector u ∈ R
3, the reflection su about the hyperplane perpendicular

to u is represented by the map
v �→ −uvu−1,

where u and v are viewed as pure quaternions in H (i.e., if u = (u1, u2, u2), then view
u as u1i+ u2j+ u3k, and similarly for v).

(2) The group SO(3) is generated by the reflections.

As one can imagine, a successful generalization of the quaternions, i.e., the discovery
of a group, G inducing the rotations in SO(n) via a linear action, depends on the ability
to generalize properties (1) and (2) above. Fortunately, it is true that the group SO(n) is
generated by the hyperplane reflections. In fact, this is also true for the orthogonal group,
O(n), and more generally, for the group of direct isometries, O(Φ), of any nondegenerate
quadratic form, Φ, by the Cartan-Dieudonné theorem (for instance, see Bourbaki [20], or
Gallier [58], Chapter 7, Theorem 7.2.1). In order to generalize (2), we need to understand
how the group G acts on R

n. Now, the case n = 3 is special, because the underlying space,
R

3, on which the rotations act, can be embedded as the pure quaternions in H. The case
n = 4 is also special, because R

4 is the underlying space of H. The generalization to n ≥ 5
requires more machinery, namely, the notions of Clifford groups and Clifford algebras. As we
will see, for every n ≥ 2, there is a compact, connected (and simply connected when n ≥ 3)
group, Spin(n), the “spinor group,” and a surjective homomorphism, ρ : Spin(n) → SO(n),
whose kernel is {−1, 1}. This time, Spin(n) acts directly on R

n, because Spin(n) is a certain
subgroup of the group of units of the Clifford algebra, Cln, and R

n is naturally a subspace
of Cln.

The group of unit quaternions SU(2) turns out to be isomorphic to the spinor group
Spin(3). Because Spin(3) acts directly on R

3, the representation of rotations in SO(3)
by elements of Spin(3) may be viewed as more natural than the representation by unit
quaternions. The group SU(2) × SU(2) turns out to be isomorphic to the spinor group
Spin(4), but this isomorphism is less obvious.

In summary, we are going to define a group Spin(n) representing the rotations in SO(n),
for any n ≥ 1, in the sense that there is a linear action of Spin(n) on R

n which induces a
surjective homomorphism, ρ : Spin(n) → SO(n), whose kernel is {−1, 1}. Furthermore, the
action of Spin(n) on R

n is given in terms of multiplication in an algebra, Cln, containing
Spin(n), and in which R

n is also embedded. It turns out that as a bonus, for n ≥ 3, the
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group Spin(n) is topologically simpler than SO(n), since Spin(n) is simply connected, but
SO(n) is not. By being astute, we can also construct a group, Pin(n), and a linear action
of Pin(n) on R

n that induces a surjective homomorphism, ρ : Pin(n) → O(n), whose kernel
is {−1, 1}. The difficulty here is the presence of the negative sign in (2). We will see how
Atiyah, Bott and Shapiro circumvent this problem by using a “twisted adjoint action,” as
opposed to the usual adjoint action (where v �→ uvu−1).

Our presentation is heavily influenced by Bröcker and tom Dieck [25], Chapter 1, Section
6, where most details can be found. This Chapter is almost entirely taken from the first 11
pages of the beautiful and seminal paper by Atiyah, Bott and Shapiro [11], Clifford Modules,
and we highly recommend it. Another excellent (but concise) exposition can be found in
Kirillov [85]. A very thorough exposition can be found in two places:

1. Lawson and Michelsohn [96], where the material on Pin(p, q) and Spin(p, q) can be
found in Chapter I.

2. Lounesto’s excellent book [99].

One may also want to consult Baker [13], Curtis [38], Porteous [124], Fulton and Harris
(Lecture 20) [57], Choquet-Bruhat [36], Bourbaki [20], or Chevalley [35], a classic. The
original source is Elie Cartan’s book (1937) whose translation in English appears in [28].

We begin by recalling what is an algebra over a field. Let K denote any (commutative)
field, although for our purposes, we may assume that K = R (and occasionally, K = C).
Since we will only be dealing with associative algebras with a multiplicative unit, we only
define algebras of this kind.

Definition 21.1 Given a field, K, a K-algebra is a K-vector space, A, together with a
bilinear operation, · : A × A → A, called multiplication, which makes A into a ring with
unity, 1 (or 1A, when we want to be very precise). This means that · is associative and that
there is a multiplicative identity element, 1, so that 1 · a = a · 1 = a, for all a ∈ A. Given
two K-algebras A and B, a K-algebra homomorphism, h : A → B, is a linear map that is
also a ring homomorphism, with h(1A) = 1B.

For example, the ring, Mn(K), of all n× n matrices over a field, K, is a K-algebra.

There is an obvious notion of ideal of a K-algebra: An ideal, A ⊆ A, is a linear subspace
of A that is also a two-sided ideal with respect to multiplication in A. If the field K is
understood, we usually simply say an algebra instead of a K-algebra.

We will also need tensor products. A rather detailed exposition of tensor products is given
in Chapter 22 and the reader may want to review Section 22.1. For the reader’s convenience,
we recall the definition of the tensor product of vector spaces. The basic idea is that tensor
products allow us to view multilinear maps as linear maps. The maps become simpler, but
the spaces (product spaces) become more complicated (tensor products). For more details,
see Section 22.1 or Atiyah and Macdonald [9].
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Definition 21.2 Given two K-vector spaces, E and F , a tensor product of E and F is a
pair, (E ⊗ F, ⊗), where E ⊗ F is a K-vector space and ⊗ : E × F → E ⊗ F is a bilinear
map, so that for every K-vector space, G, and every bilinear map, f : E × F → G, there is
a unique linear map, f⊗ : E ⊗ F → G, with

f(u, v) = f⊗(u⊗ v) for all u ∈ E and all v ∈ V ,

as in the diagram below:

E × F
⊗ ��

f
��

E ⊗ F

f⊗
��
G

The vector space E ⊗ F is defined up to isomorphism. The vectors u⊗ v, where u ∈ E
and v ∈ F , generate E ⊗ F .

Remark: We should really denote the tensor product of E and F by E ⊗K F , since it
depends on the field K. Since we usually deal with a fixed field K, we use the simpler
notation E ⊗ F .

As shown in Section 22.3, we have natural isomorphisms

(E ⊗ F )⊗G ≈ E ⊗ (F ⊗G) and E ⊗ F ≈ F ⊗ E.

Given two linear maps f : E → F and g : E � → F �, we have a unique bilinear map
f × g : E × E � → F × F � so that

(f × g)(a, a�) = (f(a), g(a�)) for all a ∈ E and all a� ∈ E �.

Thus, we have the bilinear map ⊗ ◦ (f × g) : E × E � → F ⊗ F �, and so, there is a unique
linear map f ⊗ g : E ⊗ E � → F ⊗ F �, so that

(f ⊗ g)(a⊗ a�) = f(a)⊗ g(a�) for all a ∈ E and all a� ∈ E �.

Let us now assume that E and F are K-algebras. We want to make E ⊗ F into a K-
algebra. Since the multiplication operations mE : E × E → E and mF : F × F → F are
bilinear, we get linear maps m�

E
: E ⊗ E → E and m�

F
: F ⊗ F → F , and thus, the linear

map
m�

E
⊗m�

F
: (E ⊗ E)⊗ (F ⊗ F ) → E ⊗ F.

Using the isomorphism τ : (E ⊗ E)⊗ (F ⊗ F ) → (E ⊗ F )⊗ (E ⊗ F ), we get a linear map

mE⊗F : (E ⊗ F )⊗ (E ⊗ F ) → E ⊗ F,

which defines a multiplication m on E ⊗ F (namely, m(u, v) = mE⊗F (u ⊗ v)). It is easily
checked that E ⊗ F is indeed a K-algebra under the multiplication m. Using the simpler
notation · for m, we have

(a⊗ a�) · (b⊗ b�) = (ab)⊗ (a�b�)
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for all a, b ∈ E and all a�, b� ∈ F .

Given any vector space, V , over a field, K, there is a special K-algebra, T (V ), together
with a linear map, i : V → T (V ), with the following universal mapping property: Given any
K-algebra, A, for any linear map, f : V → A, there is a unique K-algebra homomorphism,
f : T (V ) → A, so that

f = f ◦ i,
as in the diagram below:

V i ��

f ��

T (V )

f

��
A

The algebra, T (V ), is the tensor algebra of V , see Section 22.5. The algebra T (V ) may be
constructed as the direct sum

T (V ) =
�

i≥0

V ⊗i,

where V 0 = K, and V ⊗i is the i-fold tensor product of V with itself. For every i ≥ 0, there
is a natural injection ιn : V ⊗n → T (V ), and in particular, an injection ι0 : K → T (V ). The
multiplicative unit, 1, of T (V ) is the image, ι0(1), in T (V ) of the unit, 1, of the field K.
Since every v ∈ T (V ) can be expressed as a finite sum

v = v1 + · · ·+ vk,

where vi ∈ V ⊗ni and the ni are natural numbers with ni �= nj if i �= j, to define multiplication
in T (V ), using bilinearity, it is enough to define the multiplication V ⊗m×V ⊗n −→ V ⊗(m+n).
Of course, this is defined by

(v1 ⊗ · · · ⊗ vm) · (w1 ⊗ · · · ⊗ wn) = v1 ⊗ · · · ⊗ vm ⊗ w1 ⊗ · · · ⊗ wn.

(This has to be made rigorous by using isomorphisms involving the associativity of tensor
products, for details, see see Atiyah and Macdonald [9].) The algebra T (V ) is an example
of a graded algebra, where the homogeneous elements of rank n are the elements in V ⊗n.

Remark: It is important to note that multiplication in T (V ) is not commutative. Also, in
all rigor, the unit, 1, of T (V ) is not equal to 1, the unit of the field K. However, in view
of the injection ι0 : K → T (V ), for the sake of notational simplicity, we will denote 1 by 1.
More generally, in view of the injections ιn : V ⊗n → T (V ), we identify elements of V ⊗n with
their images in T (V ).

Most algebras of interest arise as well-chosen quotients of the tensor algebra T (V ). This
is true for the exterior algebra,

�• V (also called Grassmann algebra), where we take the
quotient of T (V ) modulo the ideal generated by all elements of the form v⊗ v, where v ∈ V ,
see Section 22.15.
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A Clifford algebra may be viewed as a refinement of the exterior algebra, in which we take
the quotient of T (V ) modulo the ideal generated by all elements of the form v⊗ v−Φ(v) · 1,
where Φ is the quadratic form associated with a symmetric bilinear form, ϕ : V × V → K,
and · : K × T (V ) → T (V ) denotes the scalar product of the algebra T (V ). For simplicity,
let us assume that we are now dealing with real algebras.

Definition 21.3 Let V be a real finite-dimensional vector space together with a symmetric
bilinear form, ϕ : V × V → R, and associated quadratic form, Φ(v) = ϕ(v, v). A Clifford
algebra associated with V and Φ is a real algebra, Cl(V,Φ), together with a linear map,
iΦ : V → Cl(V,Φ), satisfying the condition (i(v))2 = Φ(v) · 1 for all v ∈ V and so that for
every real algebra, A, and every linear map, f : V → A, with

(f(v))2 = Φ(v) · 1 for all v ∈ V ,

there is a unique algebra homomorphism, f : Cl(V,Φ) → A, so that

f = f ◦ iΦ,

as in the diagram below:

V
iΦ��

f
��

Cl(V,Φ)

f

��
A

We use the notation, λ · u, for the product of a scalar, λ ∈ R, and of an element, u, in the
algebra Cl(V,Φ) and juxtaposition, uv, for the multiplication of two elements, u and v, in
the algebra Cl(V,Φ).

By a familiar argument, any two Clifford algebras associated with V and Φ are isomorphic.
We often denote iΦ by i.

To show the existence of Cl(V,Φ), observe that T (V )/A does the job, where A is the
ideal of T (V ) generated by all elements of the form v⊗ v−Φ(v) · 1, where v ∈ V . The map
iΦ : V → Cl(V,Φ) is the composition

V
ι1−→ T (V )

π−→ T (V )/A,

where π is the natural quotient map. We often denote the Clifford algebra Cl(V,Φ) simply
by Cl(Φ).

Remark: Observe that Definition 21.3 does not assert that iΦ is injective or that there is
an injection of R into Cl(V,Φ), but we will prove later that both facts are true when V is
finite-dimensional. Also, as in the case of the tensor algebra, the unit of the algebra Cl(V,Φ)
and the unit of the field R are not equal.
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Since
Φ(u+ v)− Φ(u)− Φ(v) = 2ϕ(u, v)

and
(i(u+ v))2 = (i(u))2 + (i(v))2 + i(u)i(v) + i(v)i(u),

using the fact that
i(u)2 = Φ(u) · 1,

we get
i(u)i(v) + i(v)i(u) = 2ϕ(u, v) · 1.

As a consequence, if (u1, . . . , un) is an orthogonal basis w.r.t. ϕ (which means that
ϕ(uj, uk) = 0 for all j �= k), we have

i(uj)i(uk) + i(uk)i(uj) = 0 for all j �= k.

Remark: Certain authors drop the unit, 1, of the Clifford algebra Cl(V,Φ) when writing
the identities

i(u)2 = Φ(u) · 1
and

2ϕ(u, v) · 1 = i(u)i(v) + i(v)i(u),

where the second identity is often written as

ϕ(u, v) =
1

2
(i(u)i(v) + i(v)i(u)).

This is very confusing and technically wrong, because we only have an injection of R into
Cl(V,Φ), but R is not a subset of Cl(V,Φ).� We warn the readers that Lawson and Michelsohn [96] adopt the opposite of our sign

convention in defining Clifford algebras, i.e., they use the condition

(f(v))2 = −Φ(v) · 1 for all v ∈ V .

The most confusing consequence of this is that their Cl(p, q) is our Cl(q, p).

Observe that when Φ ≡ 0 is the quadratic form identically zero everywhere, then the
Clifford algebra Cl(V, 0) is just the exterior algebra,

�• V .

Example 21.1 Let V = R, e1 = 1, and assume that Φ(x1e1) = −x2
1. Then, Cl(Φ) is

spanned by the basis (1, e1). We have

e21 = −1.

Under the bijection
e1 �→ i,
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the Clifford algebra, Cl(Φ), also denoted by Cl1, is isomorphic to the algebra of complex
numbers, C.

Now, let V = R
2, (e1, e2) be the canonical basis, and assume that Φ(x1e1 + x2e2) =

−(x2
1 + x2

2). Then, Cl(Φ) is spanned by the basis by (1, e1, e2, e1e2). Furthermore, we have

e2e1 = −e1e2, e21 = −1, e22 = −1, (e1e2)
2 = −1.

Under the bijection
e1 �→ i, e2 �→ j, e1e2 �→ k,

it is easily checked that the quaternion identities

i2 = j2 = k2 = −1,

ij = −ji = k,

jk = −kj = i,

ki = −ik = j,

hold, and thus, the Clifford algebra Cl(Φ), also denoted by Cl2, is isomorphic to the algebra
of quaternions, H.

Our prime goal is to define an action of Cl(Φ) on V in such a way that by restricting
this action to some suitably chosen multiplicative subgroups of Cl(Φ), we get surjective
homomorphisms onto O(Φ) and SO(Φ), respectively. The key point is that a reflection
in V about a hyperplane H orthogonal to a vector w can be defined by such an action,
but some negative sign shows up. A correct handling of signs is a bit subtle and requires
the introduction of a canonical anti-automorphism, t, and of a canonical automorphism, α,
defined as follows:

Proposition 21.1 Every Clifford algebra, Cl(Φ), possesses a canonical anti-automorphism,
t : Cl(Φ) → Cl(Φ), satisfying the properties

t(xy) = t(y)t(x), t ◦ t = id, and t(i(v)) = i(v),

for all x, y ∈ Cl(Φ) and all v ∈ V . Furthermore, such an anti-automorphism is unique.

Proof . Consider the opposite algebra Cl(Φ)o, in which the product of x and y is given by
yx. It has the universal mapping property. Thus, we get a unique isomorphism, t, as in the
diagram below:

V i ��

i ��

Cl(V,Φ)

t

��
Cl(Φ)o

We also denote t(x) by xt. When V is finite-dimensional, for a more palatable description
of t in terms of a basis of V , see the paragraph following Theorem 21.4.

The canonical automorphism, α, is defined using the proposition
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Proposition 21.2 Every Clifford algebra, Cl(Φ), has a unique canonical automorphism,
α : Cl(Φ) → Cl(Φ), satisfying the properties

α ◦ α = id, and α(i(v)) = −i(v),

for all v ∈ V .

Proof . Consider the linear map α0 : V → Cl(Φ) defined by α0(v) = −i(v), for all v ∈ V . We
get a unique homomorphism, α, as in the diagram below:

V i ��

α0 ��

Cl(V,Φ)

α

��
Cl(Φ)

Furthermore, every x ∈ Cl(Φ) can be written as

x = x1 · · · xm,

with xj ∈ i(V ), and since α(xj) = −xj, we get α ◦ α = id. It is clear that α is bijective.

Again, when V is finite-dimensional, a more palatable description of α in terms of a basis
of V can be given. If (e1, . . . , en) is a basis of V , then the Clifford algebra Cl(Φ) consists of
certain kinds of “polynomials,” linear combinations of monomials of the form

�
J
λJeJ , where

J = {i1, i2, . . . , ik} is any subset (possibly empty) of {1, . . . , n}, with 1 ≤ i1 < i2 · · · < ik ≤ n,
and the monomial eJ is the “product” ei1ei2 · · · eik . The map α is the linear map defined on
monomials by

α(ei1ei2 · · · eik) = (−1)kei1ei2 · · · eik .
For a more rigorous explanation, see the paragraph following Theorem 21.4.

We now show that if V has dimension n, then i is injective and Cl(Φ) has dimension 2n.
A clever way of doing this is to introduce a graded tensor product.

First, observe that
Cl(Φ) = Cl0(Φ)⊕ Cl1(Φ),

where
Cli(Φ) = {x ∈ Cl(Φ) | α(x) = (−1)ix}, where i = 0, 1.

We say that we have a Z/2-grading , which means that if x ∈ Cli(Φ) and y ∈ Clj(Φ), then
xy ∈ Cli+j (mod 2)(Φ).

When V is finite-dimensional, since every element of Cl(Φ) is a linear combination of the
form

�
J
λJeJ , as explained earlier, in view of the description of α given above, we see that

the elements of Cl0(Φ) are those for which the monomials eJ are products of an even number
of factors, and the elements of Cl1(Φ) are those for which the monomials eJ are products of
an odd number of factors.
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Remark: Observe that Cl0(Φ) is a subalgebra of Cl(Φ), whereas Cl1(Φ) is not.

Given two Z/2-graded algebras A = A0 ⊕ A1 and B = B0 ⊕ B1, their graded tensor
product A �⊗ B is defined by

(A �⊗ B)0 = (A0 ⊕ B0)⊗ (A1 ⊕ B1),

(A �⊗ B)1 = (A0 ⊕ B1)⊗ (A1 ⊕ B0),

with multiplication
(a� ⊗ b)(a⊗ b�) = (−1)ij(a�a)⊗ (bb�),

for a ∈ Ai and b ∈ Bj. The reader should check that A �⊗ B is indeed Z/2-graded.

Proposition 21.3 Let V and W be finite dimensional vector spaces with quadratic forms Φ
and Ψ. Then, there is a quadratic form, Φ⊕Ψ, on V ⊕W defined by

(Φ + Ψ)(v, w) = Φ(v) + Ψ(w).

If we write i : V → Cl(Φ) and j : W → Cl(Ψ), we can define a linear map,

f : V ⊕W → Cl(Φ) �⊗ Cl(Ψ),

by
f(v, w) = i(v)⊗ 1 + 1⊗ j(w).

Furthermore, the map f induces an isomorphism (also denoted by f)

f : Cl(V ⊕W ) → Cl(Φ) �⊗ Cl(Ψ).

Proof . See Bröcker and tom Dieck [25], Chapter 1, Section 6, page 57.

As a corollary, we obtain the following result:

Theorem 21.4 For every vector space, V , of finite dimension n, the map i : V → Cl(Φ) is
injective. Given a basis (e1, . . . , en) of V , the 2n − 1 products

i(ei1)i(ei2) · · · i(eik), 1 ≤ i1 < i2 · · · < ik ≤ n,

and 1 form a basis of Cl(Φ). Thus, Cl(Φ) has dimension 2n.

Proof . The proof is by induction on n = dim(V ). For n = 1, the tensor algebra T (V ) is
just the polynomial ring R[X], where i(e1) = X. Thus, Cl(Φ) = R[X]/(X2 − Φ(e1)), and
the result is obvious. Since

i(ej)i(ek) + i(ek)i(ej) = 2ϕ(ei, ej) · 1,

it is clear that the products

i(ei1)i(ei2) · · · i(eik), 1 ≤ i1 < i2 · · · < ik ≤ n,
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and 1 generate Cl(Φ). Now, there is always a basis that is orthogonal with respect to ϕ (for
example, see Artin [7], Chapter 7, or Gallier [58], Chapter 6, Problem 6.14), and thus, we
have a splitting

(V,Φ) =
n�

k=1

(Vk,Φk),

where Vk has dimension 1. Choosing a basis so that ek ∈ Vk, the theorem follows by induction
from Proposition 21.3.

Since i is injective, for simplicity of notation, from now on, we write u for i(u). Theorem
21.4 implies that if (e1, . . . , en) is an orthogonal basis of V , then Cl(Φ) is the algebra presented
by the generators (e1, . . . , en) and the relations

e2
j

= Φ(ej) · 1, 1 ≤ j ≤ n, and

ejek = −ekej, 1 ≤ j, k ≤ n, j �= k.

If V has finite dimension n and (e1, . . . , en) is a basis of V , by Theorem 21.4, the maps t
and α are completely determined by their action on the basis elements. Namely, t is defined
by

t(ei) = ei
t(ei1ei2 · · · eik) = eikeik−1

· · · ei1 ,

where 1 ≤ i1 < i2 · · · < ik ≤ n, and, of course, t(1) = 1. The map α is defined by

α(ei) = −ei
α(ei1ei2 · · · eik) = (−1)kei1ei2 · · · eik

where 1 ≤ i1 < i2 · · · < ik ≤ n, and, of course, α(1) = 1. Furthermore, the even-graded
elements (the elements of Cl0(Φ)) are those generated by 1 and the basis elements consisting
of an even number of factors, ei1ei2 · · · ei2k , and the odd-graded elements (the elements of
Cl1(Φ)) are those generated by the basis elements consisting of an odd number of factors,
ei1ei2 · · · ei2k+1

.

We are now ready to define the Clifford group and investigate some of its properties.

21.3 Clifford Groups

First, we define conjugation on a Clifford algebra, Cl(Φ), as the map

x �→ x = t(α(x)) for all x ∈ Cl(Φ).

Observe that
t ◦ α = α ◦ t.
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If V has finite dimension n and (e1, . . . , en) is a basis of V , in view of previous remarks,
conjugation is defined by

ei = −ei
ei1ei2 · · · eik = (−1)keikeik−1

· · · ei1

where 1 ≤ i1 < i2 · · · < ik ≤ n, and, of course, 1 = 1. Conjugation is an anti-automorphism.

The multiplicative group of invertible elements of Cl(Φ) is denoted by Cl(Φ)∗.

Definition 21.4 Given a finite dimensional vector space, V , and a quadratic form, Φ, on
V , the Clifford group of Φ is the group

Γ(Φ) = {x ∈ Cl(Φ)∗ | α(x)vx−1 ∈ V for all v ∈ V }.

The map N : Cl(Q) → Cl(Q) given by

N(x) = xx

is called the norm of Cl(Φ).

We see that the group Γ(Φ) acts on V via

x · v = α(x)vx−1,

where x ∈ Γ(Φ) and v ∈ V . Actually, it is not entirely obvious why the action Γ(Φ)×V −→ V
is a linear action, and for that matter, why Γ(Φ) is a group.

This is because V is finite-dimensional and α is an automorphism. As a consequence, for
any x ∈ Γ(Φ), the map ρx from V to V defined by

v �→ α(x)vx−1

is linear and injective, and thus bijective, since V has finite dimension. It follows that
x−1 ∈ Γ(Φ) (the reader should fill in the details).

We also define the group Γ+(Φ), called the special Clifford group, by

Γ+(Φ) = Γ(Φ) ∩ Cl0(Φ).

Observe that N(v) = −Φ(v) · 1 for all v ∈ V . Also, if (e1, . . . , en) is a basis of V , we leave it
as an exercise to check that

N(ei1ei2 · · · eik) = (−1)kΦ(ei1)Φ(ei2) · · ·Φ(eik) · 1.

Remark: The map ρ : Γ(Φ) → GL(V ) given by x �→ ρx is called the twisted adjoint repre-
sentation. It was introduced by Atiyah, Bott and Shapiro [11]. It has the advantage of not
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introducing a spurious negative sign, i.e., when v ∈ V and Φ(v) �= 0, the map ρv is the re-
flection sv about the hyperplane orthogonal to v (see Proposition 21.6). Furthermore, when
Φ is nondegenerate, the kernel Ker (ρ) of the representation ρ is given by Ker (ρ) = R

∗ · 1,
where R∗ = R− {0}. The earlier adjoint representation (used by Chevalley [35] and others)
is given by

v �→ xvx−1.

Unfortunately, in this case, ρx represents −sv, where sv is the reflection about the hyperplane
orthogonal to v. Furthermore, the kernel of the representation ρ is generally bigger than R

∗·1.
This is the reason why the twisted adjoint representation is preferred (and must be used for
a proper treatment of the Pin group).

Proposition 21.5 The maps α and t induce an automorphism and an anti-automorphism
of the Clifford group, Γ(Φ).

Proof . It is not very instructive, see Bröcker and tom Dieck [25], Chapter 1, Section 6, page
58.

The following proposition shows why Clifford groups generalize the quaternions.

Proposition 21.6 Let V be a finite dimensional vector space and Φ a quadratic form on
V . For every element, x, of the Clifford group, Γ(Φ), if Φ(x) �= 0, then the map ρx : V → V
given by

v �→ α(x)vx−1 for all v ∈ V

is the reflection about the hyperplane H orthogonal to the vector x.

Proof . Recall that the reflection s about the hyperplane H orthogonal to the vector x is
given by

s(u) = u− 2
ϕ(u, x)

Φ(x)
· x.

However, we have
x2 = Φ(x) · 1 and ux+ xu = 2ϕ(u, x) · 1.

Thus, we have

s(u) = u− 2
ϕ(u, x)

Φ(x)
· x

= u− 2ϕ(u, x) ·
�

1

Φ(x)
· x

�

= u− 2ϕ(u, x) · x−1

= u− 2ϕ(u, x) · (1x−1)

= u− (2ϕ(u, x) · 1)x−1

= u− (ux+ xu)x−1

= −xux−1

= α(x)ux−1,
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since α(x) = −x, for x ∈ V .

In general, we have a map
ρ : Γ(Φ) → GL(V )

defined by
ρ(x)(v) = α(x)vx−1,

for all x ∈ Γ(Φ) and all v ∈ V . We would like to show that ρ is a surjective homomorphism
from Γ(Φ) onto O(ϕ) and a surjective homomorphism from Γ+(Φ) onto SO(ϕ). For this,
we will need to assume that ϕ is nondegenerate, which means that for every v ∈ V , if
ϕ(v, w) = 0 for all w ∈ V , then v = 0. For simplicity of exposition, we first assume that Φ
is the quadratic form on R

n defined by

Φ(x1, . . . , xn) = −(x2
1 + · · ·+ x2

n
).

Let Cln denote the Clifford algebra Cl(Φ) and Γn denote the Clifford group Γ(Φ). The
following lemma plays a crucial role:

Lemma 21.7 The kernel of the map ρ : Γn → GL(n) is R
∗ · 1, the multiplicative group of

nonzero scalar multiples of 1 ∈ Cln.

Proof . If ρ(x) = id, then

α(x)v = vx for all v ∈ R
n. (1)

Since Cln = Cl0
n
⊕ Cl1

n
, we can write x = x0 + x1, with xi ∈ Cli

n
for i = 1, 2. Then, equation

(1) becomes

x0v = vx0 and − x1v = vx1 for all v ∈ R
n. (2)

Using Theorem 21.4, we can express x0 as a linear combination of monomials in the canonical
basis (e1, . . . , en), so that

x0 = a0 + e1b
1, with a0 ∈ Cl0

n
, b1 ∈ Cl1

n
,

where neither a0 nor b1 contains a summand with a factor e1. Applying the first relation in
(2) to v = e1, we get

e1a
0 + e21b

1 = a0e1 + e1b
1e1. (3)

Now, the basis (e1, . . . , en) is orthogonal w.r.t. Φ, which implies that

ejek = −ekej for all j �= k.

Since each monomial in a0 is of even degre and contains no factor e1, we get

a0e1 = e1a
0.
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Similarly, since b1 is of odd degree and contains no factor e1, we get

e1b
1e1 = −e21b

1.

But then, from (3), we get

e1a
0 + e21b

1 = a0e1 + e1b
1e1 = e1a

0 − e21b
1,

and so, e21b
1 = 0. However, e21 = −1, and so, b1 = 0. Therefore, x0 contains no monomial

with a factor e1. We can apply the same argument to the other basis elements e2, . . . , en,
and thus, we just proved that x0 ∈ R · 1.

A similar argument applying to the second equation in (2), with x1 = a1+e1b0 and v = e1
shows that b0 = 0. We also conclude that x1 ∈ R · 1. However, R · 1 ⊆ Cl0

n
, and so, x1 = 0.

Finally, x = x0 ∈ (R · 1) ∩ Γn = R
∗ · 1.

Remark: If Φ is any nondegenerate quadratic form, we know (for instance, see Artin [7],
Chapter 7, or Gallier [58], Chapter 6, Problem 6.14) that there is an orthogonal basis
(e1, . . . , en) with respect to ϕ (i.e. ϕ(ej, ek) = 0 for all j �= k). Thus, the commutation
relations

e2
j

= Φ(ej) · 1, with Φ(ej) �= 0, 1 ≤ j ≤ n, and

ejek = −ekej, 1 ≤ j, k ≤ n, j �= k

hold, and since the proof only rests on these facts, Lemma 21.7 holds for any nondegenerate
quadratic form.� However, Lemma 21.7 may fail for degenerate quadratic forms. For example, if Φ ≡ 0,

then Cl(V, 0) =
�• V . Consider the element x = 1 + e1e2. Clearly, x−1 = 1− e1e2. But

now, for any v ∈ V , we have

α(1 + e1e2)v(1 + e1e2)
−1 = (1 + e1e2)v(1− e1e2) = v.

Yet, 1 + e1e2 is not a scalar multiple of 1.

The following proposition shows that the notion of norm is well-behaved.

Proposition 21.8 If x ∈ Γn, then N(x) ∈ R
∗ · 1.

Proof . The trick is to show that N(x) is in the kernel of ρ. To say that x ∈ Γn means that

α(x)vx−1 ∈ R
n for all v ∈ R

n.

Applying t, we get
t(x)−1vt(α(x)) = α(x)vx−1,
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since t is the identity on R
n. Thus, we have

v = t(x)α(x)v(t(α(x))x)−1 = α(xx)v(xx)−1,

so xx ∈ Ker (ρ). By Proposition 21.5, we have x ∈ Γn, and so, xx = x x ∈ Ker (ρ).

Remark: Again, the proof also holds for the Clifford group Γ(Φ) associated with any non-
degenerate quadratic form Φ. When Φ(v) = −�v�2, where �v� is the standard Euclidean
norm of v, we have N(v) = �v�2 · 1 for all v ∈ V . However, for other quadratic forms, it is
possible that N(x) = λ · 1 where λ < 0, and this is a difficulty that needs to be overcome.

Proposition 21.9 The restriction of the norm, N , to Γn is a homomorphism, N : Γn →
R

∗ · 1, and N(α(x)) = N(x) for all x ∈ Γn.

Proof . We have
N(xy) = xyy x = xN(y)x = xxN(y) = N(x)N(y),

where the third equality holds because N(x) ∈ R
∗ · 1. We also have

N(α(x)) = α(x)α(x) = α(xx) = α(N(x)) = N(x).

Remark: The proof also holds for the Clifford group Γ(Φ) associated with any nondegen-
erate quadratic form Φ.

Proposition 21.10 We have R
n − {0} ⊆ Γn and ρ(Γn) ⊆ O(n).

Proof . Let x ∈ Γn and v ∈ R
n, with v �= 0. We have

N(ρ(x)(v)) = N(α(x)vx−1) = N(α(x))N(v)N(x−1) = N(x)N(v)N(x)−1 = N(v),

since N : Γn → R
∗ · 1. However, for v ∈ R

n, we know that

N(v) = −Φ(v) · 1.

Thus, ρ(x) is norm-preserving, and so, ρ(x) ∈ O(n).

Remark: The proof that ρ(Γ(Φ)) ⊆ O(Φ) also holds for the Clifford group Γ(Φ) associated
with any nondegenerate quadratic form Φ. The first statement needs to be replaced by the
fact that every non-isotropic vector in R

n (a vector is non-isotropic if Φ(x) �= 0) belongs to
Γ(Φ). Indeed, x2 = Φ(x) · 1, which implies that x is invertible.

We are finally ready for the introduction of the groups Pin(n) and Spin(n).



566 CHAPTER 21. CLIFFORD ALGEBRAS, CLIFFORD GROUPS, PIN AND SPIN

21.4 The Groups Pin(n) and Spin(n)

Definition 21.5 We define the pinor group, Pin(n), as the kernel Ker (N) of the homo-
morphism N : Γn → R

∗ · 1, and the spinor group, Spin(n), as Pin(n) ∩ Γ+
n
.

Observe that if N(x) = 1, then x is invertible and x−1 = x, since xx = N(x) = 1. Thus,
we can write

Pin(n) = {x ∈ Cln | xvx−1 ∈ R
n for all v ∈ R

n, N(x) = 1},

and
Spin(n) = {x ∈ Cl0

n
| xvx−1 ∈ R

n for all v ∈ R
n, N(x) = 1}.

Remark: According to Atiyah, Bott and Shapiro, the use of the name Pin(k) is a joke due
to Jean-Pierre Serre (Atiyah, Bott and Shapiro [11], page 1).

Theorem 21.11 The restriction of ρ to the pinor group, Pin(n), is a surjective homo-
morphism, ρ : Pin(n) → O(n), whose kernel is {−1, 1}, and the restriction of ρ to the
spinor group, Spin(n), is a surjective homomorphism, ρ : Spin(n) → SO(n), whose kernel
is {−1, 1}.

Proof . By Proposition 21.10, we have a map ρ : Pin(n) → O(n). The reader can easily
check that ρ is a homomorphism. By the Cartan-Dieudonné theorem (see Bourbaki [20],
or Gallier [58], Chapter 7, Theorem 7.2.1), every isometry f ∈ SO(n) is the composition
f = s1 ◦ · · · ◦ sk of hyperplane reflections sj. If we assume that sj is a reflection about the
hyperplane Hj orthogonal to the nonzero vector wj, by Proposition 21.6, ρ(wj) = sj. Since
N(wj) = �wj�2 · 1, we can replace wj by wj/ �wj�, so that N(w1 · · ·wk) = 1, and then

f = ρ(w1 · · ·wk),

and ρ is surjective. Note that

Ker (ρ | Pin(n)) = Ker (ρ) ∩ ker(N) = {t ∈ R
∗ · 1 | N(t) = 1} = {−1, 1}.

As to Spin(n), we just need to show that the restriction of ρ to Spin(n) maps Γn into
SO(n). If this was not the case, there would be some improper isometry f ∈ O(n) so that
ρ(x) = f , where x ∈ Γn ∩ Cl0

n
. However, we can express f as the composition of an odd

number of reflections, say
f = ρ(w1 · · ·w2k+1).

Since
ρ(w1 · · ·w2k+1) = ρ(x),

we have x−1w1 · · ·w2k+1 ∈ Ker (ρ). By Lemma 21.7, we must have

x−1w1 · · ·w2k+1 = λ · 1
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for some λ ∈ R
∗, and thus,

w1 · · ·w2k+1 = λ · x,
where x has even degree and w1 · · ·w2k+1 has odd degree, which is impossible.

Let us denote the set of elements v ∈ R
n with N(v) = 1 (with norm 1) by Sn−1. We have

the following corollary of Theorem 21.11:

Corollary 21.12 The group Pin(n) is generated by Sn−1 and every element of Spin(n) can
be written as the product of an even number of elements of Sn−1.

Example 21.2 The reader should verify that

Pin(1) ≈ Z/4Z, Spin(1) = {−1, 1} ≈ Z/2Z,

and also that

Pin(2) ≈ {ae1 + be2 | a2 + b2 = 1} ∪ {c1 + de1e2 | c2 + d2 = 1}, Spin(2) = U(1).

We may also write Pin(2) = U(1) + U(1), where U(1) is the group of complex numbers
of modulus 1 (the unit circle in R

2). It can also be shown that Spin(3) ≈ SU(2) and
Spin(4) ≈ SU(2) × SU(2). The group Spin(5) is isomorphic to the symplectic group
Sp(2), and Spin(6) is isomorphic to SU(4) (see Curtis [38] or Porteous [124]).

Let us take a closer look at Spin(2). The Clifford algebra Cl2 is generated by the four
elements

1, e1, e2, , e1e2,

and they satisfy the relations

e21 = −1, e22 = −1, e1e2 = −e2e1.

The group Spin(2) consists of all products

2k�

i=1

(aie1 + bie2)

consisting of an even number of factors and such that a2
i
+ b2

i
= 1. In view of the above

relations, every such element can be written as

x = a1 + be1e2,

where x satisfies the conditions that xvx−1 ∈ R
2 for all v ∈ R

2, and N(x) = 1. Since

X = a1− be1e2,



568 CHAPTER 21. CLIFFORD ALGEBRAS, CLIFFORD GROUPS, PIN AND SPIN

we get
N(x) = a2 + b2,

and the condition N(x) = 1 is simply a2 + b2 = 1. We claim that xvx−1 ∈ R
2 if x ∈ Cl02.

Indeed, since x ∈ Cl02 and v ∈ Cl12, we have xvx−1 ∈ Cl12, which implies that xvx−1 ∈ R
2,

since the only elements of Cl12 are those in R
2. Then, Spin(2) consists of those elements

x = a1 + be1e2 so that a2 + b2 = 1. If we let i = e1e2, we observe that

i2 = −1,

e1i = −ie1 = −e2,

e2i = −ie2 = e1.

Thus, Spin(2) is isomorphic to U(1). Also note that

e1(a1 + bi) = (a1− bi)e1.

Let us find out explicitly what is the action of Spin(2) on R
2. Given X = a1 + bi, with

a2 + b2 = 1, for any v = v1e1 + v2e2, we have

α(X)vX−1 = X(v1e1 + v2e2)X
−1

= X(v1e1 + v2e2)(−e1e1)X

= X(v1e1 + v2e2)(−e1)(e1X)

= X(v11 + v2i)Xe1
= X2(v11 + v2i)e1
= (((a2 − b2)v1 − 2abv2)1 + (a2 − b2)v2 + 2abv1)i)e1
= ((a2 − b2)v1 − 2abv2)e1 + (a2 − b2)v2 + 2abv1)e2.

Since a2+ b2 = 1, we can write X = a1+ bi = (cos θ)1+(sin θ)i, and the above derivation
shows that

α(X)vX−1 = (cos 2θv1 − sin 2θv2)e1 + (cos 2θv2 + sin 2θv1)e2.

This means that the rotation ρX induced by X ∈ Spin(2) is the rotation of angle 2θ around
the origin. Observe that the maps

v �→ v(−e1), X �→ Xe1

establish bijections between R
2 and Spin(2) � U(1). Also, note that the action of X =

cos θ+ i sin θ viewed as a complex number yields the rotation of angle θ, whereas the action
of X = (cos θ)1 + (sin θ)i viewed as a member of Spin(2) yields the rotation of angle 2θ.
There is nothing wrong. In general, Spin(n) is a two–to–one cover of SO(n).

Next, let us take a closer look at Spin(3). The Clifford algebra Cl3 is generated by the
eight elements

1, e1, e2, , e3, , e1e2, e2e3, e3e1, e1e2e3,
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and they satisfy the relations

e2
i
= −1, ejej = −ejei, 1 ≤ i, j ≤ 3, i �= j.

The group Spin(3) consists of all products

2k�

i=1

(aie1 + bie2 + cie3)

consisting of an even number of factors and such that a2
i
+ b2

i
+ c2

i
= 1. In view of the above

relations, every such element can be written as

x = a1 + be2e3 + ce3e1 + de1e2,

where x satisfies the conditions that xvx−1 ∈ R
3 for all v ∈ R

3, and N(x) = 1. Since

X = a1− be2e3 − ce3e1 − de1e2,

we get
N(x) = a2 + b2 + c2 + d2,

and the condition N(x) = 1 is simply a2 + b2 + c2 + d2 = 1.

It turns out that the conditions x ∈ Cl03 and N(x) = 1 imply that xvx−1 ∈ R
3 for all

v ∈ R
3. To prove this, first observe that N(x) = 1 implies that x−1 = ±x, and that v = −v

for any v ∈ R
3, and so,

xvx−1 = −xvx−1.

Also, since x ∈ Cl03 and v ∈ Cl13, we have xvx−1 ∈ Cl13. Thus, we can write

xvx−1 = u+ λe1e2e3, for some u ∈ R
3 and some λ ∈ R.

But
e1e2e3 = −e3e2e1 = e1e2e3,

and so,
xvx−1 = −u+ λe1e2e3 = −xvx−1 = −u− λe1e2e3,

which implies that λ = 0. Thus, xvx−1 ∈ R
3, as claimed. Then, Spin(3) consists of those

elements x = a1 + be2e3 + ce3e1 + de1e2 so that a2 + b2 + c2 + d2 = 1. Under the bijection

i �→ e2e3, j �→ e3e1, k �→ e1e2,

we can check that we have an isomorphism between the group SU(2) of unit quaternions
and Spin(3). If X = a1 + be2e3 + ce3e1 + de1e2 ∈ Spin(3), observe that

X−1 = X = a1− be2e3 − ce3e1 − de1e2.
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Now, using the identification

i �→ e2e3, j �→ e3e1, k �→ e1e2,

we can easily check that

(e1e2e3)
2 = 1,

(e1e2e3)i = i(e1e2e3) = −e1,

(e1e2e3)j = j(e1e2e3) = −e2,

(e1e2e3)k = k(e1e2e3) = −e3,

(e1e2e3)e1 = −i,

(e1e2e3)e2 = −j,

(e1e2e3)e3 = −k.

Then, if X = a1 + bi+ cj+ dk ∈ Spin(3), for every v = v1e1 + v2e2 + v3e3, we have

α(X)vX−1 = X(v1e1 + v2e2 + v3e3)X
−1

= X(e1e2e3)
2(v1e1 + v2e2 + v3e3)X

−1

= (e1e2e3)X(e1e2e3)(v1e1 + v2e2 + v3e3)X
−1

= −(e1e2e3)X(v1i+ v2j+ v3k)X
−1.

This shows that the rotation ρX ∈ SO(3) induced by X ∈ Spin(3) can be viewed as the
rotation induced by the quaternion a1+bi+cj+dk on the pure quaternions, using the maps

v �→ −(e1e2e3)v, X �→ −(e1e2e3)X

to go from a vector v = v1e1 + v2e2 + v3e3 to the pure quaternion v1i+ v2j+ v3k, and back.

We close this section by taking a closer look at Spin(4). The group Spin(4) consists of
all products

2k�

i=1

(aie1 + bie2 + cie3 + die4)

consisting of an even number of factors and such that a2
i
+ b2

i
+ c2

i
+ d2

i
= 1. Using the

relations
e2
i
= −1, ejej = −ejei, 1 ≤ i, j ≤ 4, i �= j,

every element of Spin(4) can be written as

x = a11 + a2e1e2 + a3e2e3 + a4e3e1 + a5e4e3 + a6e4e1 + a7e4e2 + a8e1e2e3e4,

where x satisfies the conditions that xvx−1 ∈ R
4 for all v ∈ R

4, and N(x) = 1. Let

i = e1e2, j = e2e3, k = 33e1, i
� = e4e3, j

� = e4e1, k
� = e4e2,
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and I = e1e2e3e4. The reader will easily verify that

ij = k

jk = i

ki = j

i2 = −1, j2 = −1, k2 = −1

iI = Ii = i�

jI = Ij = j�

kI = Ik = k�

I
2 = 1, I = I.

Then, every x ∈ Spin(4) can be written as

x = u+ Iv, with u = a1 + bi+ cj+ dk and v = a�1 + b�i+ c�j+ d�k,

with the extra conditions stated above. Using the above identities, we have

(u+ Iv)(u� + Iv�) = uu� + vv� + I(uv� + vu�).

As a consequence,

N(u+ Iv) = (u+ Iv)(u+ Iv) = uu+ vv + I(uv + vu),

and thus, N(u+ Iv) = 1 is equivalent to

uu+ vv = 1 and uv + vu = 0.

As in the case n = 3, it turns out that the conditions x ∈ Cl04 and N(x) = 1 imply that
xvx−1 ∈ R

4 for all v ∈ R
4. The only change to the proof is that xvx−1 ∈ Cl14 can be written

as
xvx−1 = u+

�

i,j,k

λi,j,keiejek, for some u ∈ R
4, with {i, j, k} ⊆ {1, 2, 3, 4}.

As in the previous proof, we get λi,j,k = 0. Then, Spin(4) consists of those elements u+ Iv
so that

uu+ vv = 1 and uv + vu = 0,

with u and v of the form a1 + bi + cj + dk. Finally, we see that Spin(4) is isomorphic to
Spin(2)× Spin(2) under the isomorphism

u+ vI �→ (u+ v, u− v).

Indeed, we have
N(u+ v) = (u+ v)(u+ v) = 1,
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and
N(u− v) = (u− v)(u− v) = 1,

since
uu+ vv = 1 and uv + vu = 0,

and

(u+ v, u− v)(u� + v�, u� − v�) = (uu� + vv� + uv� + vu�, uu� + vv� − (uv� + vu�)).

Remark: It can be shown that the assertion if x ∈ Cl0
n
and N(x) = 1, then xvx−1 ∈ R

n for
all v ∈ R

n, is true up to n = 5 (see Porteous [124], Chapter 13, Proposition 13.58). However,
this is already false for n = 6. For example, if X = 1/

√
2(1 + e1e2e3e4e5e6), it is easy to see

that N(X) = 1, and yet, Xe1X−1 /∈ R
6.

21.5 The Groups Pin(p, q) and Spin(p, q)

For every nondegenerate quadratic form Φ over R, there is an orthogonal basis with respect
to which Φ is given by

Φ(x1, . . . , xp+q) = x2
1 + · · ·+ x2

p
− (x2

p+1 + · · ·+ x2
p+q

),

where p and q only depend on Φ. The quadratic form corresponding to (p, q) is denoted Φp,q

and we call (p, q) the signature of Φp,q. Let n = p + q. We define the group O(p, q) as the
group of isometries w.r.t. Φp,q, i.e., the group of linear maps f so that

Φp,q(f(v)) = Φp,q(v) for all v ∈ R
n

and the group SO(p, q) as the subgroup of O(p, q) consisting of the isometries, f ∈ O(p, q),
with det(f) = 1. We denote the Clifford algebra Cl(Φp,q) where Φp,q has signature (p, q) by
Clp,q, the corresponding Clifford group by Γp,q, and the special Clifford group Γp,q ∩Cl0

p,q
by

Γ+
p,q
. Note that with this new notation, Cln = Cl0,n.� As we mentioned earlier, since Lawson and Michelsohn [96] adopt the opposite of our
sign convention in defining Clifford algebras, their Cl(p, q) is our Cl(q, p).

As we mentioned in Section 21.3, we have the problem that N(v) = −Φ(v) · 1 but −Φ(v)
is not necessarily positive (where v ∈ R

n). The fix is simple: Allow elements x ∈ Γp,q with
N(x) = ±1.

Definition 21.6 We define the pinor group, Pin(p, q), as the group

Pin(p, q) = {x ∈ Γp,q | N(x) = ±1},

and the spinor group, Spin(p, q), as Pin(p, q) ∩ Γ+
p,q
.
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Remarks:

(1) It is easily checked that the group Spin(p, q) is also given by

Spin(p, q) = {x ∈ Cl0
p,q

| xvx ∈ R
n for all v ∈ R

n, N(x) = 1}.

This is because Spin(p, q) consists of elements of even degree.

(2) One can check that if N(x) �= 0, then

α(x)vx−1 = xvt(x)/N(x).

Thus, we have

Pin(p, q) = {x ∈ Clp,q | xvt(x)N(x) ∈ R
n for all v ∈ R

n, N(x) = ±1}.

When Φ(x) = −�x�2, we have N(x) = �x�2, and

Pin(n) = {x ∈ Cln | xvt(x) ∈ R
n for all v ∈ R

n, N(x) = 1}.

Theorem 21.11 generalizes as follows:

Theorem 21.13 The restriction of ρ to the pinor group, Pin(p, q), is a surjective homo-
morphism, ρ : Pin(p, q) → O(p, q), whose kernel is {−1, 1}, and the restriction of ρ to the
spinor group, Spin(p, q), is a surjective homomorphism, ρ : Spin(p, q) → SO(p, q), whose
kernel is {−1, 1}.

Proof . The Cartan-Dieudonné also holds for any nondegenerate quadratic form Φ, in the
sense that every isometry in O(Φ) is the composition of reflections defined by hyperplanes
orthogonal to non-isotropic vectors (see Dieudonné [42], Chevalley [35], Bourbaki [20], or Gal-
lier [58], Chapter 7, Problem 7.14). Thus, Theorem 21.11 also holds for any nondegenerate
quadratic form Φ. The only change to the proof is the following: Since N(wj) = −Φ(wj) · 1,
we can replace wj by wj/

�
|Φ(wj)|, so that N(w1 · · ·wk) = ±1, and then

f = ρ(w1 · · ·wk),

and ρ is surjective.

If we consider Rn equipped with the quadratic form Φp,q (with n = p+ q), we denote the
set of elements v ∈ R

n with N(v) = 1 by Sn−1
p,q

. We have the following corollary of Theorem
21.13 (generalizing Corollary 21.14):

Corollary 21.14 The group Pin(p, q) is generated by Sn−1
p,q

and every element of Spin(p, q)
can be written as the product of an even number of elements of Sn−1

p,q
.
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Example 21.3 The reader should check that

Cl0,1 ≈ C, Cl1,0 ≈ R⊕ R.

We also have
Pin(0, 1) ≈ Z/4Z, Pin(1, 0) ≈ Z/2Z× Z/2Z,

from which we get Spin(0, 1) = Spin(1, 0) ≈ Z/2Z. Also, show that

Cl0,2 ≈ H, Cl1,1 ≈ M2(R), Cl2,0 ≈ M2(R),

where Mn(R) denotes the algebra of n × n matrices. One can also work out what are
Pin(2, 0), Pin(1, 1), and Pin(0, 2); see Choquet-Bruhat [36], Chapter I, Section 7, page 26.
Show that

Spin(0, 2) = Spin(2, 0) ≈ U(1),

and
Spin(1, 1) = {a1 + be1e2 | a2 − b2 = 1}.

Observe that Spin(1, 1) is not connected.

More generally, it can be shown that Cl0
p,q

and Cl0
q,p

are isomorphic, from which it follows
that Spin(p, q) and Spin(q, p) are isomorphic, butPin(p, q) andPin(q, p) are not isomorphic
in general, and in particular, Pin(p, 0) and Pin(0, p) are not isomorphic in general (see
Choquet-Bruhat [36], Chapter I, Section 7). However, due to the “8-periodicity” of the
Clifford algebras (to be discussed in the next section), it follows that Clp,q and Clq,p are
isomorphic when |p− q| = 0 mod 4.

21.6 Periodicity of the Clifford Algebras Clp,q

It turns out that the real algebras Clp,q can be build up as tensor products of the basic
algebras R, C, and H. As pointed out by Lounesto (Section 23.16 [99]), the description of
the real algebras Clp,q as matrix algebras and the 8-periodicity was first observed by Elie
Cartan in 1908; see Cartan’s article, Nombres Complexes, based on the original article in
German by E. Study, in Molk [112], article I-5 (fasc. 3), pages 329-468. These algebras are
defined in Section 36 under the name “‘Systems of Clifford and Lipschitz,” page 463-466.
Of course, Cartan used a very different notation; see page 464 in the article cited above.
These facts were rediscovered independently by Raoul Bott in the 1960’s (see Raoul Bott’s
comments in Volume 2 of his Collected papers.).

We will use the notation R(n) (resp. C(n)) for the algebra Mn(R) of all n × n real
matrices (resp. the algebra Mn(C) of all n×n complex matrices). As mentioned in Example
21.3, it is not hard to show that

Cl0,1 = C Cl1,0 = R⊕ R

Cl0,2 = H Cl2,0 = R(2)
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and
Cl1,1 = R(2).

The key to the classification is the following lemma:

Lemma 21.15 We have the isomorphisms

Cl0,n+2 ≈ Cln,0 ⊗ Cl0,2
Cln+2,0 ≈ Cl0,n ⊗ Cl2,0

Clp+1,q+1 ≈ Clp,q ⊗ Cl1,1,

for all n, p, q ≥ 0.

Proof . Let Φ0,n(x) = −�x�2, where �x� is the standard Euclidean norm on R
n+2, and let

(e1, . . . , en+2) be an orthonormal basis for Rn+2 under the standard Euclidean inner product.
We also let (e�1, . . . , e

�
n
) be a set of generators for Cln,0 and (e��1, e

��
2) be a set of generators

for Cl0,2. We can define a linear map f : Rn+2 → Cln,0 ⊗ Cl0,2 by its action on the basis
(e1, . . . , en+2) as follows:

f(ei) =

�
e�
i
⊗ e��1e

��
2 for 1 ≤ i ≤ n

1⊗ e��
i−n

for n+ 1 ≤ i ≤ n+ 2.

Observe that for 1 ≤ i, j ≤ n, we have

f(ei)f(ej) + f(ej)f(ei) = (e�
i
e�
j
+ e�

j
e�
i
)⊗ (e��1e

��
e
)2 = −2δij1⊗ 1,

since e��1e
��
2 = −e��2e

��
1, (e

��
1)

2 = −1, and (e��2)
2 = −1, and e�

i
e�
j
= −e�

j
e�
i
, for all i �= j, and

(e�
i
)2 = 1, for all i with 1 ≤ i ≤ n. Also, for n+ 1 ≤ i, j ≤ n+ 2, we have

f(ei)f(ej) + f(ej)f(ei) = 1⊗ (e��
i−n

e��
j−n

+ e��
j−n

e��
i−n

) = −2δij1⊗ 1,

and
f(ei)f(ek) + f(ek)f(ei) = 2e�

i
⊗ (e��1e

��
2e

��
n−k

+ e��
n−k

e��1e
��
2) = 0,

for 1 ≤ i, j ≤ n and n+ 1 ≤ k ≤ n+ 2 (since e��
n−k

= e��1 or e��
n−k

= e��2). Thus, we have

f(x)2 = −�x�2 · 1⊗ 1 for all x ∈ R
n+2,

and by the universal mapping property of Cl0,n+2, we get an algebra map

�f : Cl0,n+2 → Cln,0 ⊗ Cl0,2.

Since �f maps onto a set of generators, it is surjective. However

dim(Cl0,n+2) = 2n+2 = 2n · 2 = dim(Cln,0)dim(Cl0,2) = dim(Cln,0 ⊗ Cl0,2),

and �f is an isomorphism.



576 CHAPTER 21. CLIFFORD ALGEBRAS, CLIFFORD GROUPS, PIN AND SPIN

The proof of the second identity is analogous. For the third identity, we have

Φp,q(x1, . . . , xp+q) = x2
1 + · · ·+ x2

p
− (x2

p+1 + · · ·+ x2
p+q

),

and let (e1, . . . , ep+1, �1, . . . , �q+1) be an orthogonal basis for Rp+q+2 so that Φp+1,q+1(ei) = +1
and Φp+1,q+1(�j) = −1 for i = 1, . . . , p+1 and j = 1, . . . , q+1. Also, let (e�1, . . . , e

�
p
, ��1, . . . , �

�
q
)

be a set of generators for Clp,q and (e��1, �
��
1) be a set of generators for Cl1,1. We define a linear

map f : Rp+q+2 → Clp,q ⊗ Cl1,1 by its action on the basis as follows:

f(ei) =

�
e�
i
⊗ e��1�

��
1 for 1 ≤ i ≤ p

1⊗ e��1 for i = p+ 1,

and

f(�j) =

�
��
j
⊗ e��1�

��
1 for 1 ≤ j ≤ q

1⊗ ���1 for j = q + 1.

We can check that

f(x)2 = Φp+1,q+1(x) · 1⊗ 1 for all x ∈ R
p+q+2,

and we finish the proof as in the first case.

To apply this lemma, we need some further isomorphisms among various matrix algebras.

Proposition 21.16 The following isomorphisms hold:

R(m)⊗ R(n) ≈ R(mn) for all m,n ≥ 0

R(n)⊗R K ≈ K(n) for K = C or K = H and all n ≥ 0

C⊗R C ≈ C⊕ C

C⊗R H ≈ C(2)

H⊗R H ≈ R(4).

Proof . Details can be found in Lawson and Michelsohn [96]. The first two isomorphisms are
quite obvious. The third isomorphism C⊕ C → C⊗ C is obtained by sending

(1, 0) �→ 1

2
(1⊗ 1 + i⊗ i), (0, 1) �→ 1

2
(1⊗ 1− i⊗ i).

The field C is isomorphic to the subring of H generated by i. Thus, we can view H as a
C-vector space under left scalar multiplication. Consider the R-bilinear map
π : C×H → HomC(H,H) given by

πy,z(x) = yxz,

where y ∈ C and x, z ∈ H. Thus, we get an R-linear map π : C ⊗R H → HomC(H,H).
However, we have HomC(H,H) ≈ C(2). Furthermore, since

πy,z ◦ πy�,z� = πyy�,zz� ,
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the map π is an algebra homomorphism

π : C×H → C(2).

We can check on a basis that π is injective, and since

dimR(C×H) = dimR(C(2)) = 8,

the map π is an isomorphism. The last isomorphism is proved in a similar fashion.

We now have the main periodicity theorem.

Theorem 21.17 (Cartan/Bott) For all n ≥ 0, we have the following isomorphisms:

Cl0,n+8 ≈ Cl0,n ⊗ Cl0,8
Cln+8,0 ≈ Cln,0 ⊗ Cl8,0.

Furthermore,
Cl0,8 = Cl8,0 = R(16).

Proof . By Lemma 21.15 we have the isomorphisms

Cl0,n+2 ≈ Cln,0 ⊗ Cl0,2
Cln+2,0 ≈ Cl0,n ⊗ Cl2,0,

and thus,

Cl0,n+8 ≈ Cln+6,0 ⊗Cl0,2 ≈ Cl0,n+4 ⊗Cl2,0 ⊗Cl0,2 ≈ · · · ≈ Cl0,n ⊗Cl2,0 ⊗Cl0,2 ⊗Cl2,0 ⊗Cl0,2.

Since Cl0,2 = H and Cl2,0 = R(2), by Proposition 21.16, we get

Cl2,0 ⊗ Cl0,2 ⊗ Cl2,0 ⊗ Cl0,2 ≈ H⊗H⊗ R(2)⊗ R(2) ≈ R(4)⊗ R(4) ≈ R(16).

The second isomorphism is proved in a similar fashion.

From all this, we can deduce the following table:

n 0 1 2 3 4 5 6 7 8
Cl0,n R C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)
Cln,0 R R⊕ R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)

A table of the Clifford groups Clp,q for 0 ≤ p, q ≤ 7 can be found in Kirillov [85], and for
0 ≤ p, q ≤ 8, in Lawson and Michelsohn [96] (but beware that their Clp,q is our Clq,p). It can
also be shown that

Clp+1,q ≈ Clq+1,p

Clp,q ≈ Clp−4,q+4
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with p ≥ 4 in the second identity (see Lounesto [99], Chapter 16, Sections 16.3 and 16.4).
Using the second identity, if |p−q| = 4k, it is easily shown by induction on k that Clp,q ≈ Clq,p,
as claimed in the previous section.

We also have the isomorphisms

Clp,q ≈ Cl0
p,q+1,

frow which it follows that
Spin(p, q) ≈ Spin(q, p)

(see Choquet-Bruhat [36], Chapter I, Sections 4 and 7). However, in general, Pin(p, q) and
Pin(q, p) are not isomorphic. In fact, Pin(0, n) and Pin(n, 0) are not isomorphic if n �= 4k,
with k ∈ N (see Choquet-Bruhat [36], Chapter I, Section 7, page 27).

21.7 The Complex Clifford Algebras Cl(n,C)

One can also consider Clifford algebras over the complex field C. In this case, it is well-known
that every nondegenerate quadratic form can be expressed by

ΦC

n
(x1, . . . , xn) = x2

1 + · · ·+ x2
n

in some orthonormal basis. Also, it is easily shown that the complexification C ⊗R Clp,q
of the real Clifford algebra Clp,q is isomorphic to Cl(ΦC

n
). Thus, all these complex algebras

are isomorphic for p + q = n, and we denote them by Cl(n,C). Theorem 21.15 yields the
following periodicity theorem:

Theorem 21.18 The following isomorphisms hold:

Cl(n+ 2,C) ≈ Cl(n,C)⊗C Cl(2,C),

with Cl(2,C) = C(2).

Proof . Since Cl(n,C) = C⊗R Cl0,n = C⊗R Cln,0, by Lemma 21.15, we have

Cl(n+ 2,C) = C⊗R Cl0,n+2 ≈ C⊗R (Cln,0 ⊗R Cl0,2) ≈ (C⊗R Cln,0)⊗C (C⊗R Cl0,2).

However, Cl0,2 = H, Cl(n,C) = C ⊗R Cln,0, and C ⊗R H ≈ C(2), so we get Cl(2,C) = C(2)
and

Cl(n+ 2,C) ≈ Cl(n,C)⊗C C(2),

and the theorem is proved.

As a corollary of Theorem 21.18, we obtain the fact that

Cl(2k,C) ≈ C(2k) and Cl(2k + 1,C) ≈ C(2k)⊕ C(2k).
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The table of the previous section can also be completed as follows:

n 0 1 2 3 4 5 6 7 8
Cl0,n R C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)
Cln,0 R R⊕ R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)

Cl(n,C) C 2C C(2) 2C(2) C(4) 2C(4) C(8) 2C(8) C(16).

where 2C(k) is an abbrevation for C(k)⊕ C(k).

21.8 The Groups Pin(p, q) and Spin(p, q) as double cov-
ers of O(p, q) and SO(p, q)

It turns out that the groups Pin(p, q) and Spin(p, q) have nice topological properties w.r.t.
the groups O(p, q) and SO(p, q). To explain this, we review the definition of covering maps
and covering spaces (for details, see Fulton [56], Chapter 11). Another interesting source is
Chevalley [34], where is is proved that Spin(n) is a universal double cover of SO(n) for all
n ≥ 3.

Since Cp,q is an algebra of dimension 2p+q, it is a topological space as a vector space
isomorphic to V = R

2p+q
. Now, the group C∗

p,q
of units of Cp,q is open in Cp,q, because

x ∈ Cp,q is a unit if the linear map y �→ xy is an isomorphism, and GL(V ) is open in
End(V ), the space of endomorphisms of V . Thus, C∗

p,q
is a Lie group, and since Pin(p, q)

and Spin(p, q) are clearly closed subgroups of C∗
p,q
, they are also Lie groups.

The definition below is analogous to the definition of a covering map given in Section
3.9 (Definition 3.33) except that now, we are only dealing with topological spaces and not
manifolds.

Definition 21.7 Given two topological spaces X and Y , a covering map is a continuous
surjective map, p : Y → X, with the property that for every x ∈ X, there is some open
subset, U ⊆ X, with x ∈ U , so that p−1(U) is the disjoint union of open subsets, Vα ⊆ Y ,
and the restriction of p to each Vα is a homeomorphism onto U . We say that U is evenly
covered by p. We also say that Y is a covering space of X. A covering map p : Y → X is
called trivial if X itself is evenly covered by p (i.e., Y is the disjoint union of open subsets,
Yα, each homeomorphic to X), and nontrivial , otherwise. When each fiber, p−1(x), has the
same finite cardinaly n for all x ∈ X, we say that p is an n-covering (or n-sheeted covering).

Note that a covering map, p : Y → X, is not always trivial, but always locally trivial (i.e.,
for every x ∈ X, it is trivial in some open neighborhood of x). A covering is trivial iff Y
is isomorphic to a product space of X × T , where T is any set with the discrete topology.
Also, if Y is connected, then the covering map is nontrivial.

Definition 21.8 An isomorphism ϕ between covering maps p : Y → X and p� : Y � → X is
a homeomorphism, ϕ : Y → Y �, so that p = p� ◦ ϕ.
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Typically, the space X is connected, in which case it can be shown that all the fibers
p−1(x) have the same cardinality.

One of the most important properties of covering spaces is the path–lifting property, a
property that we will use to show that Spin(n) is path-connected. The proposition below is
the analog of Proposition 3.33 for topological spaces and continuous curves.

Proposition 21.19 (Path lifting) Let p : Y → X be a covering map, and let γ : [a, b] → X
be any continuous curve from xa = γ(a) to xb = γ(b) in X. If y ∈ Y is any point so that
p(y) = xa, then there is a unique curve, �γ : [a, b] → Y , so that y = �γ(a) and

p ◦ �γ(t) = γ(t) for all t ∈ [a, b].

Proof . See Fulton [57], Chapter 11, Lemma 11.6.

Many important covering maps arise from the action of a group G on a space Y . If Y
is a topological space, an action (on the left) of a group G on Y is a map α : G × Y → Y
satisfying the following conditions, where, for simplicity of notation, we denote α(g, y) by
g · y:

(1) g · (h · y) = (gh) · y, for all g, h ∈ G and y ∈ Y ;

(2) 1 · y = y, for all ∈ Y , where 1 is the identity of the group G;

(3) The map y �→ g · y is a homeomorphism of Y for every g ∈ G.

We define an equivalence relation on Y as follows: x ≡ y iff y = g · x for some g ∈ G
(check that this is an equivalence relation). The equivalence class G · x = {g · x | g ∈ G} of
any x ∈ Y is called the orbit of x. We obtain the quotient space Y/G and the projection
map p : Y → Y/G sending every y ∈ Y to its orbit. The space Y/G is given the quotient
topology (a subset U of Y/G is open iff p−1(U) is open in Y ).

Given a subset V of Y and any g ∈ G, we let

g · V = {g · y | y ∈ V }.

We say that G acts evenly on Y if for every y ∈ Y there is an open subset V containing y
so that g · V and h · V are disjoint for any two distinct elements g, h ∈ G.

The importance of the notion a group acting evenly is that such actions induce a covering
map.

Proposition 21.20 If G is a group acting evenly on a space Y , then the projection map,
p : Y → Y/G, is a covering map.

Proof . See Fulton [57], Chapter 11, Lemma 11.17.

The following proposition shows that Pin(p, q) and Spin(p, q) are nontrivial covering
spaces unless p = q = 1.
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Proposition 21.21 For all p, q ≥ 0, the groups Pin(p, q) and Spin(p, q) are double covers of
O(p, q) and SO(p, q), respectively. Furthermore, they are nontrivial covers unless p = q = 1.

Proof . We know that kernel of the homomorphism ρ : Pin(p, q) → O(p, q) is Z2 = {−1, 1}.
If we let Z2 act on Pin(p, q) in the natural way, then O(p, q) ≈ Pin(p, q)/Z2, and the reader
can easily check that Z2 acts evenly. By Proposition 21.20, we get a double cover. The
argument for ρ : Spin(p, q) → SO(p, q) is similar.

Let us now assume that p �= 1 and q �= 1. In order to prove that we have nontrivial
covers, it is enough to show that −1 and 1 are connected by a path in Pin(p, q) (If we had
Pin(p, q) = U1 ∪ U2 with U1 and U2 open, disjoint, and homeomorphic to O(p, q), then −1
and 1 would not be in the same Ui, and so, they would be in disjoint connected components.
Thus, −1 and 1 can’t be path–connected, and similarly with Spin(p, q) and SO(p, q).) Since
(p, q) �= (1, 1), we can find two orthogonal vectors e1 and e2 so that Φp,q(e1) = Φp,q(e2) = ±1.
Then,

γ(t) = ± cos(2t) 1 + sin(2t) e1e2 = (cos t e1 + sin t e2)(sin t e2 − cos t e1),

for 0 ≤ t ≤ π, defines a path in Spin(p, q), since

(± cos(2t) 1 + sin(2t) e1e2)
−1 = ± cos(2t) 1− sin(2t) e1e2,

as desired.

In particular, if n ≥ 2, since the group SO(n) is path-connected, the group Spin(n) is
also path-connected. Indeed, given any two points xa and xb in Spin(n), there is a path
γ from ρ(xa) to ρ(xb) in SO(n) (where ρ : Spin(n) → SO(n) is the covering map). By
Proposition 21.19, there is a path �γ in Spin(n) with origin xa and some origin �xb so that
ρ( �xb) = ρ(xb). However, ρ−1(ρ(xb)) = {−xb, xb}, and so, �xb = ±xb. The argument used in
the proof of Proposition 21.21 shows that xb and −xb are path-connected, and so, there is
a path from xa to xb, and Spin(n) is path-connected. In fact, for n ≥ 3, it turns out that
Spin(n) is simply connected. Such a covering space is called a universal cover (for instance,
see Chevalley [34]).

This last fact requires more algebraic topology than we are willing to explain in detail,
and we only sketch the proof. The notions of fibre bundle, fibration, and homotopy sequence
associated with a fibration are needed in the proof. We refer the perseverant readers to Bott
and Tu [19] (Chapter 1 and Chapter 3, Sections 16–17) or Rotman [128] (Chapter 11) for a
detailed explanation of these concepts.

Recall that a topological space is simply connected if it is path connected and if π1(X) =
(0), which means that every closed path in X is homotopic to a point. Since we just proved
that Spin(n) is path connected for n ≥ 2, we just need to prove that π1(Spin(n)) = (0) for
all n ≥ 3. The following facts are needed to prove the above assertion:

(1) The sphere Sn−1 is simply connected for all n ≥ 3.
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(2) The group Spin(3) � SU(2) is homeomorphic to S3, and thus, Spin(3) is simply
connected.

(3) The group Spin(n) acts on Sn−1 in such a way that we have a fibre bundle with fibre
Spin(n− 1):

Spin(n− 1) −→ Spin(n) −→ Sn−1.

Fact (1) is a standard proposition of algebraic topology and a proof can found in many
books. A particularly elegant and yet simple argument consists in showing that any closed
curve on Sn−1 is homotopic to a curve that omits some point. First, it is easy to see that
in R

n, any closed curve is homotopic to a piecewise linear curve (a polygonal curve), and
the radial projection of such a curve on Sn−1 provides the desired curve. Then, we use the
stereographic projection of Sn−1 from any point omitted by that curve to get another closed
curve in R

n−1. Since Rn−1 is simply connected, that curve is homotopic to a point, and so is
its preimage curve on Sn−1. Another simple proof uses a special version of the Seifert—van
Kampen’s theorem (see Gramain [63]).

Fact (2) is easy to establish directly, using (1).

To prove (3), we let Spin(n) act on Sn−1 via the standard action: x ·v = xvx−1. Because
SO(n) acts transitively on Sn−1 and there is a surjection Spin(n) −→ SO(n), the group
Spin(n) also acts transitively on Sn−1. Now, we have to show that the stabilizer of any
element of Sn−1 is Spin(n− 1). For example, we can do this for e1. This amounts to some
simple calculations taking into account the identities among basis elements. Details of this
proof can be found in Mneimné and Testard [111], Chapter 4. It is still necessary to prove
that Spin(n) is a fibre bundle over Sn−1 with fibre Spin(n−1). For this, we use the following
results whose proof can be found in Mneimné and Testard [111], Chapter 4:

Lemma 21.22 Given any topological group G, if H is a closed subgroup of G and the
projection π : G → G/H has a local section at every point of G/H, then

H −→ G −→ G/H

is a fibre bundle with fibre H.

Lemma 21.22 implies the following key proposition:

Proposition 21.23 Given any linear Lie group G, if H is a closed subgroup of G, then

H −→ G −→ G/H

is a fibre bundle with fibre H.

Now, a fibre bundle is a fibration (as defined in Bott and Tu [19], Chapter 3, Section
16, or in Rotman [128], Chapter 11). For a proof of this fact, see Rotman [128], Chapter
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11, or Mneimné and Testard [111], Chapter 4. So, there is a homotopy sequence associated
with the fibration (Bott and Tu [19], Chapter 3, Section 17, or Rotman [128], Chapter 11,
Theorem 11.48), and in particular, we have the exact sequence

π1(Spin(n− 1)) −→ π1(Spin(n)) −→ π1(S
n−1).

Since π1(Sn−1) = (0) for n ≥ 3, we get a surjection

π1(Spin(n− 1)) −→ π1(Spin(n)),

and so, by induction and (2), we get

π1(Spin(n)) ≈ π1(Spin(3)) = (0),

proving that Spin(n) is simply connected for n ≥ 3.

We can also show that π1(SO(n)) = Z/2Z for all n ≥ 3. For this, we use Theorem 21.11
and Proposition 21.21, which imply that Spin(n) is a fibre bundle over SO(n) with fibre
{−1, 1}, for n ≥ 2:

{−1, 1} −→ Spin(n) −→ SO(n).

Again, the homotopy sequence of the fibration exists, and in particular, we get the exact
sequence

π1(Spin(n)) −→ π1(SO(n)) −→ π0({−1,+1}) −→ π0(SO(n)).

Since π0({−1,+1}) = Z/2Z, π0(SO(n)) = (0), and π1(Spin(n)) = (0), when n ≥ 3, we get
the exact sequence

(0) −→ π1(SO(n)) −→ Z/2Z −→ (0),

and so, π1(SO(n)) = Z/2Z. Therefore, SO(n) is not simply connected for n ≥ 3.

Remark: Of course, we have been rather cavalier in our presentation. Given a topological
space, X, the group π1(X) is the fundamental group of X, i.e., the group of homotopy
classes of closed paths in X (under composition of loops). But π0(X) is generally not a
group! Instead, π0(X) is the set of path-connected components of X. However, when X is
a Lie group, π0(X) is indeed a group. Also, we have to make sense of what it means for
the sequence to be exact. All this can be made rigorous (see Bott and Tu [19], Chapter 3,
Section 17, or Rotman [128], Chapter 11).
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