
Chapter 13

Curvature in Riemannian Manifolds

13.1 The Curvature Tensor

If (M, �−,−�) is a Riemannian manifold and ∇ is a connection on M (that is, a connection
on TM), we saw in Section 11.2 (Proposition 11.8) that the curvature induced by ∇ is given
by

R(X, Y ) = ∇X ◦ ∇Y −∇Y ◦ ∇X −∇[X,Y ],

for all X, Y ∈ X(M), with R(X, Y ) ∈ Γ(Hom(TM, TM)) ∼= HomC∞(M)(Γ(TM),Γ(TM)).
Since sections of the tangent bundle are vector fields (Γ(TM) = X(M)), R defines a map

R : X(M)× X(M)× X(M) −→ X(M),

and, as we observed just after stating Proposition 11.8, R(X, Y )Z is C∞(M)-linear in X, Y, Z
and skew-symmetric in X and Y . It follows that R defines a (1, 3)-tensor, also denoted R,
with

Rp : TpM × TpM × TpM −→ TpM.

Experience shows that it is useful to consider the (0, 4)-tensor, also denoted R, given by

Rp(x, y, z, w) = �Rp(x, y)z, w�p

as well as the expression R(x, y, y, x), which, for an orthonormal pair, of vectors (x, y), is
known as the sectional curvature, K(x, y).

This last expression brings up a dilemma regarding the choice for the sign of R. With
our present choice, the sectional curvature, K(x, y), is given by K(x, y) = R(x, y, y, x) but
many authors define K as K(x, y) = R(x, y, x, y). Since R(x, y) is skew-symmetric in x, y,
the latter choice corresponds to using −R(x, y) instead of R(x, y), that is, to define R(X, Y )
by

R(X, Y ) = ∇[X,Y ] +∇Y ◦ ∇X −∇X ◦ ∇Y .

As pointed out by Milnor [106] (Chapter II, Section 9), the latter choice for the sign of R has
the advantage that, in coordinates, the quantity, �R(∂/∂xh, ∂/∂xi)∂/∂xj, ∂/∂xk� coincides
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400 CHAPTER 13. CURVATURE IN RIEMANNIAN MANIFOLDS

with the classical Ricci notation, Rhijk. Gallot, Hulin and Lafontaine [60] (Chapter 3, Section
A.1) give other reasons supporting this choice of sign. Clearly, the choice for the sign of R
is mostly a matter of taste and we apologize to those readers who prefer the first choice but
we will adopt the second choice advocated by Milnor and others. Therefore, we make the
following formal definition:

Definition 13.1 Let (M, �−,−�) be a Riemannian manifold equipped with the Levi-Civita
connection. The curvature tensor is the (1, 3)-tensor, R, defined by

Rp(x, y)z = ∇[X,Y ]Z +∇Y∇XZ −∇X∇YZ,

for every p ∈ M and for any vector fields, X, Y, Z ∈ X(M), such that x = X(p), y = Y (p)
and z = Z(p). The (0, 4)-tensor associated with R, also denoted R, is given by

Rp(x, y, z, w) = �(Rp(x, y)z, w�,

for all p ∈ M and all x, y, z, w ∈ TpM .

Locally in a chart, we write
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The coefficients, Rl

jhi
, can be expressed in terms of the Christoffel symbols, Γk

ij
, in terms of a

rather unfriendly formula (see Gallot, Hulin and Lafontaine [60] (Chapter 3, Section 3.A.3)
or O’Neill [119] (Chapter III, Lemma 38). Since we have adopted O’Neill’s conventions for
the order of the subscripts in Rl

jhi
, here is the formula from O’Neill:
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There is another way of defining the curvature tensor which is useful for comparing
second covariant derivatives of one-forms. Recall that for any fixed vector field, Z, the map,
Y �→ ∇YZ, is a (1, 1) tensor that we will denote ∇−Z. Thus, using Proposition 11.5, the
covariant derivative ∇X∇−Z of ∇−Z makes sense and is given by

(∇X(∇−Z))(Y ) = ∇X(∇YZ)− (∇∇XY )Z.

Usually, (∇X(∇−Z))(Y ) is denoted by ∇2
X,Y

Z and

∇2
X,Y

Z = ∇X(∇YZ)−∇∇XYZ
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is called the second covariant derivative of Z with respect to X and Y . Then, we have

∇2
Y,X

Z −∇2
X,Y

Z = ∇Y (∇XZ)−∇∇Y XZ −∇X(∇YZ) +∇∇XYZ

= ∇Y (∇XZ)−∇X(∇YZ) +∇∇XY−∇Y XZ

= ∇Y (∇XZ)−∇X(∇YZ) +∇[X,Y ]Z

= R(X, Y )Z,

since ∇XY − ∇YX = [X, Y ], as the Levi-Civita connection is torsion-free. Therefore, the
curvature tensor can also be defined by

R(X, Y )Z = ∇2
Y,X

Z −∇2
X,Y

Z.

We already know that the curvature tensor has some symmetry properties, for example,
R(y, x)z = −R(x, y)z but when it is induced by the Levi-Civita connection, it has more
remarkable properties stated in the next proposition.

Proposition 13.1 For a Riemannian manifold, (M, �−,−�), equipped with the Levi-Civita
connection, the curvature tensor satisfies the following properties:

(1) R(x, y)z = −R(y, x)z

(2) (First Bianchi Identity) R(x, y)z +R(y, z)x+R(z, x)y = 0

(3) R(x, y, z, w) = −R(x, y, w, z)

(4) R(x, y, z, w) = R(z, w, x, y).

The proof of Proposition 13.1 uses the fact that Rp(x, y)z = R(X, Y )Z, for any vector
fields X, Y, Z such that x = X(p), y = Y (p) and Z = Z(p). In particular, X, Y, Z can be
chosen so that their pairwise Lie brackets are zero (choose a coordinate system and give
X, Y, Z constant components). Part (1) is already known. Part (2) follows from the fact
that the Levi-Civita connection is torsion-free. Parts (3) and (4) are a little more tricky.
Complete proofs can be found in Milnor [106] (Chapter II, Section 9), O’Neill [119] (Chapter
III) and Kuhnel [91] (Chapter 6, Lemma 6.3).

If ω ∈ A1(M) is a one-form, then the covariant derivative of ω defines a (0, 2)-tensor, T ,
given by T (Y, Z) = (∇Y ω)(Z). Thus, we can define the second covariant derivative, ∇2

X,Y
ω,

of ω as the covariant derivative of T (see Proposition 11.5), that is,

(∇XT )(Y, Z) = X(T (Y, Z))− T (∇XY, Z)− T (Y,∇XZ),

and so

(∇2
X,Y

ω)(Z) = X((∇Y ω)(Z))− (∇∇XY ω)(Z)− (∇Y ω)(∇XZ)

= X((∇Y ω)(Z))− (∇Y ω)(∇XZ)− (∇∇XY ω)(Z)

= (∇X(∇Y ω))(Z)− (∇∇XY ω)(Z).
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Therefore,
∇2

X,Y
ω = ∇X(∇Y ω)−∇∇XY ω,

that is, ∇2
X,Y

ω is formally the same as ∇2
X,Y

Z. Then, it is natural to ask what is

∇2
X,Y

ω −∇2
Y,X

ω.

The answer is given by the following proposition which plays a crucial role in the proof of a
version of Bochner’s formula:

Proposition 13.2 For any vector fields, X, Y, Z ∈ X(M), and any one-form, ω ∈ A1(M),
on a Riemannian manifold, M , we have

((∇2
X,Y

−∇2
Y,X

)ω)(Z) = ω(R(X, Y )Z).

Proof . Recall that we proved in Section 11.5 that

(∇Xω)
� = ∇ω�.

We claim that we also have
(∇2

X,Y
ω)� = ∇2

X,Y
ω�.

This is because

(∇2
X,Y

ω)� = (∇X(∇Y ω))
� − (∇∇XY ω)

�

= ∇X(∇Y ω)
� −∇∇XY ω

�

= ∇X(∇Y ω
�)−∇∇XY ω

�

= ∇2
X,Y

ω�.

Thus, we deduce that

((∇2
X,Y

−∇2
Y,X

)ω)� = (∇2
X,Y

−∇2
Y,X

)ω� = R(Y,X)ω�.

Consequently,

((∇2
X,Y

−∇2
Y,X

)ω)(Z) = �((∇2
X,Y

−∇2
Y,X

)ω)�, Z�
= �R(Y,X)ω�, Z�
= R(Y,X,ω�, Z)

= R(X, Y, Z,ω�)

= �R(X, Y )Z,ω��
= ω(R(X, Y )Z),

where we used properties (3) and (4) of Proposition 13.1.

The next proposition will be needed in the proof of the second variation formula. If
α : U → M is a parametrized surface, where U is some open subset of R2, we say that a
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vector field, V ∈ X(M), is a vector field along α iff V (x, y) ∈ Tα(x,y)M , for all (x, y) ∈ U .
For any smooth vector field, V , along α, we also define the covariant derivatives, DV/∂x
and DV/∂y as follows: For each fixed y0, if we restrict V to the curve

x �→ α(x, y0)

we obtain a vector field, Vy0 , along this curve and we set

DX

∂x
(x, y0) =

DVy0

dx
.

Then, we let y0 vary so that (x, y0) ∈ U and this yields DV/∂x. We define DV/∂y is a
similar manner, using a fixed x0.

Proposition 13.3 For a Riemannian manifold, (M, �−,−�), equipped with the Levi-Civita
connection, for every parametrized surface, α : R2 → M , for every vector field, V ∈ X(M)
along α, we have

D

∂y

D

∂x
V − D

∂x

D

∂y
V = R

�
∂α

∂x
,
∂α

∂y

�
V.

Proof . Express both sides in local coordinates in a chart and make use of the identity

∇ ∂
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Remark: Since the Levi-Civita connection is torsion-free, it is easy to check that

D

∂x

∂α

∂y
=

D

∂y

∂α

∂x
.

We used this identity in the proof of Theorem 12.18.

The curvature tensor is a rather complicated object. Thus, it is quite natural to seek
simpler notions of curvature. The sectional curvature is indeed a simpler object and it turns
out that the curvature tensor can be recovered from it.

13.2 Sectional Curvature

Basically, the sectional curvature is the curvature of two-dimensional sections of our manifold.
Given any two vectors, u, v ∈ TpM , recall by Cauchy-Schwarz that

�u, v�2
p
≤ �u, u�p�v, v�p,

with equality iff u and v are linearly dependent. Consequently, if u and v are linearly
independent, we have

�u, u�p�v, v�p − �u, v�2
p
�= 0.
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In this case, we claim that the ratio

K(u, v) =
Rp(u, v, u, v)

�u, u�p�v, v�p − �u, v�2
p

is independent of the plane, Π, spanned by u and v. If (x, y) is another basis of Π, then

x = au+ bv

y = cu+ dv.

We get
�x, x�p�y, y�p − �x, y�2

p
= (ad− bc)2(�u, u�p�v, v�p − �u, v�2

p
)

and similarly,

Rp(x, y, x, y) = �Rp(x, y)x, y�p = (ad− bc)2Rp(u, v, u, v),

which proves our assertion.

Definition 13.2 Let (M, �−,−�) be any Riemannian manifold equipped with the Levi-
Civita connection. For every p ∈ TpM , for every 2-plane, Π ⊆ TpM , the sectional curvature,
K(Π), of Π, is given by

K(Π) = K(x, y) =
Rp(x, y, x, y)

�x, x�p�y, y�p − �x, y�2
p

,

for any basis, (x, y), of Π.

Observe that if (x, y) is an orthonormal basis, then the denominator is equal to 1. The
expression Rp(x, y, x, y) is often denoted κp(x, y). Remarkably, κp determines Rp. We denote
the function p �→ κp by κ. We state the following proposition without proof:

Proposition 13.4 Let (M, �−,−�) be any Riemannian manifold equipped with the Levi-
Civita connection. The function κ determines the curvature tensor, R. Thus, the knowledge
of all the sectional curvatures determines the curvature tensor. Moreover, we have

6�R(x, y)z, w� = κ(x+ w, y + z)− κ(x, y + z)− κ(w, y + z)

− κ(y + w, x+ z) + κ(y, x+ z) + κ(w, x+ z)

− κ(x+ w, y) + κ(x, y) + κ(w, y)

− κ(x+ w, z) + κ(x, z) + κ(w, z)

+ κ(y + w, x)− κ(y, x)− κ(w, x)

+ κ(y + w, z)− κ(y, z)− κ(w, z).
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For a proof of this formidable equation, see Kuhnel [91] (Chapter 6, Theorem 6.5). A
different proof of the above proposition (without an explicit formula) is also given in O’Neill
[119] (Chapter III, Corollary 42).

Let
R1(x, y)z = �x, z�y − �y, z�x.

Observe that
�R1(x, y)x, y� = �x, x��y, y� − �x, y�2.

As a corollary of Proposition 13.4, we get:

Proposition 13.5 Let (M, �−,−�) be any Riemannian manifold equipped with the Levi-
Civita connection. If the sectional curvature, K(Π) does not depend on the plane, Π, but
only on p ∈ M , in the sense that K is a scalar function, K : M → R, then

R = KR1.

Proof . By hypothesis,

κp(x, y) = K(p)(�x, x�p�y, y�p − �x, y�2
p
),

for all x, y. As the right-hand side of the formula in Proposition 13.4 consists of a sum of
terms, we see that the right-hand side is equal to K times a similar sum with κ replaced by

�R1(x, y)x, y� = �x, x��y, y� − �x, y�2,

so it is clear that R = KR1.

In particular, in dimension n = 2, the assumption of Proposition 13.5 holds and K is the
well-known Gaussian curvature for surfaces.

Definition 13.3 A Riemannian manifold, (M, �−,−�) is said to have constant (resp. neg-
ative, resp. positive) curvature iff its sectional curvature is constant (resp. negative, resp.
positive).

In dimension n ≥ 3, we have the following somewhat surprising theorem due to F. Schur:

Proposition 13.6 (F. Schur, 1886) Let (M, �−,−�) be a connected Riemannian manifold.
If dim(M) ≥ 3 and if the sectional curvature, K(Π), does not depend on the plane, Π ⊆ TpM ,
but only on the point, p ∈ M , then K is constant (i.e., does not depend on p).

The proof, which is quite beautiful, can be found in Kuhnel [91] (Chapter 6, Theorem
6.7).
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If we replace the metric, g = �−,−� by the metric �g = λ�−,−� where λ > 0 is a constant,
some simple calculations show that the Christoffel symbols and the Levi-Civita connection
are unchanged, as well as the curvature tensor, but the sectional curvature is changed, with

�K = λ−1K.

As a consequence, if M is a Riemannian manifold of constant curvature, by rescaling the
metric, we may assume that either K = −1, or K = 0, or K = +1. Here are standard
examples of spaces with constant curvature.

(1) The sphere, Sn ⊆ R
n+1, with the metric induced by R

n+1, where

Sn = {(x1, . . . , xn+1) ∈ R
n+1 | x2

1 + · · ·+ x2
n+1 = 1}.

The sphere, Sn, has constant sectional curvature, K = +1. This can be shown by using
the fact that the stabilizer of the action of SO(n + 1) on Sn is isomorphic to SO(n).
Then, it is easy to see that the action of SO(n) on TpSn is transitive on 2-planes and
from this, it follows that K = 1 (for details, see Gallot, Hulin and Lafontaine [60]
(Chapter 3, Proposition 3.14).

(2) Euclidean space, Rn+1, with its natural Euclidean metric. Of course, K = 0.

(3) The hyperbolic space, H+
n
(1), from Definition 2.10. Recall that this space is defined in

terms of the Lorentz innner product , �−,−�1, on R
n+1, given by

�(x1, . . . , xn+1), (y1, . . . , yn+1)�1 = −x1y1 +
n+1�

i=2

xiyi.

By definition, H+
n
(1), written simply Hn, is given by

Hn = {x = (x1, . . . , xn+1) ∈ R
n+1 | �x, x�1 = −1, x1 > 0}.

Given any points, p = (x1, . . . , xn+1) ∈ Hn, it is easy to see that the set of tangent
vectors, u ∈ TpHn, are given by the equation

�p, u�1 = 0,

that is, TpHn is orthogonal to p with respect to the Lorentz inner-product. Since
p ∈ Hn, we have �p, p�1 = −1, that is, u is lightlike, so by Proposition 2.10, all vectors
in TpHn are spacelike, that is,

�u, u�1 > 0, for all u ∈ TpH
n, u �= 0.

Therefore, the restriction of �−,−�1 to Hn is positive, definite, which means that it is
a metric on TpHn. The space Hn equipped with this metric, gH , is called hyperbolic
space and it has constant curvature, K = −1. This can be shown by using the fact that
the stabilizer of the action of SO0(n, 1) on Hn is isomorphic to SO(n) (see Proposition
2.11). Then, it is easy to see that the action of SO(n) on TpHn is transitive on 2-planes
and from this, it follows that K = −1 (for details, see Gallot, Hulin and Lafontaine
[60] (Chapter 3, Proposition 3.14).
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There are other isometric models of Hn that are perhaps intuitively easier to grasp but
for which the metric is more complicated. For example, there is a map, PD: Bn → Hn,
where Bn = {x ∈ R

n | �x� < 1} is the open unit ball in R
n, given by

PD(x) =

�
1 + �x�2

1− �x�2
,

2x

1− �x�2

�
.

It is easy to check that �PD(x),PD(x)�1 = −1 and that PD is bijective and an isometry.
One also checks that the pull-back metric, gPD = PD∗gH , on Bn, is given by

gPD =
4

(1− �x�2)2
(dx2

1 + · · ·+ dx2
n
).

The metric, gPD is called the conformal disc metric and the Riemannian manifold, (Bn, gPD)
is called the Poincaré disc model or conformal disc model . The metric gPD is proportional
to the Euclidean metric and thus, angles are preserved under the map PD. Another model
is the Poincaré half-plane model , {x ∈ R

n | x1 > 0}, with the metric

gPH =
1

x2
1

(dx2
1 + · · ·+ dx2

n
).

We already encountered this space for n = 2.

The metrics for Sn, Rn+1 and Hn have a nice expression in polar coordinates but we
prefer to discuss the Ricci curvature next.

13.3 Ricci Curvature

The Ricci tensor is another important notion of curvature. It is mathematically simpler than
the sectional curvature (since it is symmetric) but it plays an important role in the theory
of gravitation as it occurs in the Einstein field equations. The Ricci tensor is an example
of contraction, in this case, the trace of a linear map. Recall that if f : E → E is a linear
map from a finite-dimensional Euclidean vector space to itself, given any orthonormal basis,
(e1, . . . , en), we have

tr(f) =
n�

i=1

�f(ei), ei�.

Definition 13.4 Let (M, �−,−�) be a Riemannian manifold (equipped with the Levi-Civita
connection). The Ricci curvature, Ric, of M is the (0, 2)-tensor defined as follows: For every
p ∈ M , for all x, y ∈ TpM , set Ricp(x, y) to be the trace of the endomorphism, v �→ Rp(x, v)y.
With respect to any orthonormal basis, (e1, . . . , en), of TpM , we have

Ricp(x, y) =
n�

j=1

�Rp(x, ej)y, ej�p =
n�

j=1

Rp(x, ej, y, ej).
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The scalar curvature, S, of M , is the trace of the Ricci curvature, that is, for every p ∈ M ,

S(p) =
�

i �=j

R(ei, ej, ei, ej) =
�

i �=j

K(ei, ej),

where K(ei, ej) denotes the sectional curvature of the plane spanned by ei, ej.

In view of Proposition 13.1 (4), the Ricci curvature is symmetric. The tensor Ric is
a (0, 2)-tensor but it can be interpreted as a (1, 1)-tensor as follows: We let Ric#

p
be the

(1, 1)-tensor given by
�Ric#

p
u, v�p = Ric(u, v),

for all u, v ∈ TpM . Then, it is easy to see that

S(p) = tr(Ric#
p
).

This is why we said (by abuse of language) that S is the trace of Ric. Observe that if
(e1, . . . , en) is any orthonormal basis of TpM , as

Ricp(u, v) =
n�

j=1

Rp(u, ej, v, ej)

=
n�

j=1

Rp(ej, u, ej, v)

=
n�

j=1

�Rp(ej, u)ej, v�p,

we have

Ric#
p
(u) =

n�

j=1

Rp(ej, u)ej.

Observe that in dimension n = 2, we get S(p) = 2K(p). Therefore, in dimension 2, the
scalar curvature determines the curvature tensor. In dimension n = 3, it turns out that the
Ricci tensor completely determines the curvature tensor, although this is not obvious. We
will come back to this point later.

Since Ric(x, y) is symmetric, Ric(x, x) determines Ric(x, y) completely (Use the polar-
ization identity for a symmetric bilinear form, ϕ:

2ϕ(x, y) = ϕ(x+ y)− ϕ(x)− ϕ(y).)

Observe that for any orthonormal frame, (e1, . . . , en), of TpM , using the definition of the
sectional curvature, K, we have

Ric(e1, e1) =
n�

i=1

�(R(e1, ei)e1, ei� =
n�

i=2

K(e1, ei).
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Thus, Ric(e1, e1) is the sum of the sectional curvatures of any n − 1 orthogonal planes
orthogonal to e1 (a unit vector).

For a Riemannian manifold with constant sectional curvature, we see that

Ric(x, x) = (n− 1)Kg(x, x), S = n(n− 1)K,

where g = �−,−� is the metric on M . Indeed, if K is constant, then we know that R = KR1

and so,

Ric(x, x) = K
n�

i=1

g(R1(x, ei)x, ei)

= K
n�

i=1

(g(ei, ei)g(x, x)− g(ei, x)
2)

= K(ng(x, x)−
n�

i=1

g(ei, x)
2)

= (n− 1)Kg(x, x).

Spaces for which the Ricci tensor is proportional to the metric are called Einstein spaces.

Definition 13.5 A Riemannian manifold, (M, g), is called an Einstein space iff the Ricci
curvature is proportional to the metric, g, that is:

Ric(x, y) = λg(x, y),

for some function, λ : M → R.

If M is an Einstein space, observe that S = nλ.

Remark: For any Riemanian manifold, (M, g), the quantity

G = Ric− S

2
g

is called the Einstein tensor (or Einstein gravitation tensor for space-times spaces). The
Einstein tensor plays an important role in the theory of general relativity. For more on this
topic, see Kuhnel [91] (Chapters 6 and 8) O’Neill [119] (Chapter 12).
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13.4 Isometries and Local Isometries

Recall that a local isometry between two Riemannian manifolds, M and N , is a smooth map,
ϕ : M → N , so that

�(dϕ)p(u), (dϕp)(v)�ϕ(p) = �u, v�p,
for all p ∈ M and all u, v ∈ TpM . An isometry is a local isometry and a diffeomorphism.

By the inverse function theorem, if ϕ : M → N is a local isometry, then for every p ∈ M ,
there is some open subset, U ⊆ M , with p ∈ U , so that ϕ � U is an isometry between U and
ϕ(U).

Also recall that if ϕ : M → N is a diffeomorphism, then for any vector field, X, on M ,
the vector field, ϕ∗X, on N (called the push-forward of X) is given by

(ϕ∗X)q = dϕϕ−1(q)X(ϕ−1(q)), for all q ∈ N,

or equivalently, by
(ϕ∗X)ϕ(p) = dϕpX(p), for all p ∈ M.

For any smooth function, h : N → R, for any q ∈ N , we have

X∗(h)q = dhq(X∗(q))

= dhq(dϕϕ−1(q)X(ϕ−1(q)))

= d(h ◦ ϕ)ϕ−1(q)X(ϕ−1(q))

= X(h ◦ ϕ)ϕ−1(q),

that is
X∗(h)q = X(h ◦ ϕ)ϕ−1(q),

or
X∗(h)ϕ(p) = X(h ◦ ϕ)p.

It is natural to expect that isometries preserve all “natural” Riemannian concepts and
this is indeed the case. We begin with the Levi-Civita connection.

Proposition 13.7 If ϕ : M → N is an isometry, then

ϕ∗(∇XY ) = ∇ϕ∗X(ϕ∗Y ), for all X, Y ∈ X(M),

where ∇XY is the Levi-Civita connection induced by the metric on M and similarly on N .

Proof . We use the Koszul formula (Proposition 11.18),

2�∇XY, Z� = X(�Y, Z�) + Y (�X,Z�)− Z(�X, Y �)
− �Y, [X,Z]� − �X, [Y, Z]� − �Z, [Y,X]�.
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We have
(ϕ∗(∇XY ))ϕ(p) = dϕp(∇XY )p,

and as ϕ is an isometry,

�dϕp(∇XY )p, dϕpZp�ϕ(p) = �(∇XY )p, Zp�p,

so, Koszul yields

2�ϕ∗(∇XY ),ϕ∗Z�ϕ(p) = X(�Y, Z�p) + Y (�X,Z�p)− Z(�X, Y �p)
− �Y, [X,Z]�p − �X, [Y, Z]�p − �Z, [Y,X]�p.

Next, we need to compute
�∇ϕ∗X(ϕ∗Y ),ϕ∗Z�ϕ(p).

When we plug ϕ∗X, ϕ∗Y and ϕ∗Z into the Koszul formula, as ϕ is an isometry, for the
fourth term on the right-hand side, we get

�ϕ∗Y, [ϕ∗X,ϕ∗Z]�ϕ(p) = �dϕpYp, [dϕpXp, dϕpZp]�ϕ(p)
= �Yp, [Xp, Zp]�p

and similarly for the fifth and sixth term on the right-hand side. For the first term on the
right-hand side, we get

(ϕ∗X)(�ϕ∗Y,ϕ∗Z�)ϕ(p) = (ϕ∗X)(�dϕpYp, dϕpZp�)ϕ(p)
= (ϕ∗X)(�Yp, Zp�ϕ−1(ϕ(p)))ϕ(p)
= (ϕ∗X)(�Y, Z� ◦ ϕ−1)ϕ(p)
= X(�Y, Z� ◦ ϕ−1 ◦ ϕ)p
= X(�Y, Z�)p

and similarly for the second and third term. Consequently, we get

2�∇ϕ∗X(ϕ∗Y ),ϕ∗Z�ϕ(p) = X(�Y, Z�p) + Y (�X,Z�p)− Z(�X, Y �p)
− �Y, [X,Z]�p − �X, [Y, Z]�p − �Z, [Y,X]�p.

By comparing right-hand sides, we get

2�ϕ∗(∇XY ),ϕ∗Z�ϕ(p) = 2�∇ϕ∗X(ϕ∗Y ),ϕ∗Z�ϕ(p)

for all X, Y, Z, and as ϕ is a diffeomorphism, this implies

ϕ∗(∇XY ) = ∇ϕ∗X(ϕ∗Y ),

as claimed.
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As a corollary of Proposition 13.7, the curvature induced by the connection is preserved,
that is

ϕ∗R(X, Y )Z = R(ϕ∗X,ϕ∗Y )ϕ∗Z,

as well as the parallel transport, the covariant derivative of a vector field along a curve, the
exponential map, sectional curvature, Ricci curvature and geodesics. Actually, all concepts
that are local in nature are preserved by local diffeomorphisms! So, except for the Levi-
Civita connection and if we consider the Riemann tensor on vectors, all the above concepts
are preserved under local diffeomorphisms. For the record, we state:

Proposition 13.8 If ϕ : M → N is a local isometry, then the following concepts are pre-
served:

(1) The covariant derivative of vector fields along a curve, γ, that is

dϕγ(t)
DX

dt
=

Dϕ∗X

dt
,

for any vector field, X, along γ, with (ϕ∗X)(t) = dϕγ(t)Y (t), for all t.

(2) Parallel translation along a curve. If Pγ denotes parallel transport along the curve γ
and if Pϕ◦γ denotes parallel transport along the curve ϕ ◦ γ, then

dϕγ(1) ◦ Pγ = Pϕ◦γ ◦ dϕγ(0).

(3) Geodesics. If γ is a geodesic in M , then ϕ ◦ γ is a geodesic in N . Thus, if γv is the
unique geodesic with γ(0) = p and γ�

v
(0) = v, then

ϕ ◦ γv = γdϕpv,

wherever both sides are defined. Note that the domain of γdϕpv may be strictly larger
than the domain of γv. For example, consider the inclusion of an open disc into R

2.

(4) Exponential maps. We have

ϕ ◦ exp
p
= exp

ϕ(p) ◦dϕp,

wherever both sides are defined.

(5) Riemannian curvature tensor. We have

dϕpR(x, y)z = R(dϕpx, dϕpy)dϕpz, for all x, y, z ∈ TpM.

(6) Sectional, Ricci and Scalar curvature. We have

K(dϕpx, dϕpy) = K(x, y)p,
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for all linearly independent vectors, x, y ∈ TpM ;

Ric(dϕpx, dϕpy) = Ric(x, y)p

for all x, y ∈ TpM ;

SM = SN ◦ ϕ.

where SM is the scalar curvature on M and SN is the scalar curvature on N .

A useful property of local diffeomorphisms is stated below. For a proof, see O’Neill [119]
(Chapter 3, Proposition 62):

Proposition 13.9 Let ϕ,ψ : M → N be two local isometries. If M is connected and if
ϕ(p) = ψ(p) and dϕp = dψp for some p ∈ M , then ϕ = ψ.

The idea is to prove that

{p ∈ M | dϕp = dψp}

is both open and closed and for this, to use the preservation of the exponential under local
diffeomorphisms.

13.5 Riemannian Covering Maps

The notion of covering map discussed in Section 3.9 can be extended to Riemannian mani-
folds.

Definition 13.6 If M and N are two Riemannian manifold, then a map, π : M → N , is a
Riemannian covering iff the following conditions hold:

(1) The map π is a smooth covering map.

(2) The map π is a local isometry.

Recall from Section 3.9 that a covering map is a local diffeomorphism. A way to obtain
a metric on a manifold, M , is to pull-back the metric, g, on a manifold, N , along a local
diffeomorphism, ϕ : M → N (see Section 7.4). If ϕ is a covering map, then it becomes a
Riemannian covering map.

Proposition 13.10 Let π : M → N be a smooth covering map. For any Riemannian metric,
g, on N , there is a unique metric, π∗g, on M , so that π is a Riemannian covering.



414 CHAPTER 13. CURVATURE IN RIEMANNIAN MANIFOLDS

Proof . We define the pull-back metric, π∗g, on M induced by g as follows: For all p ∈ M ,
for all u, v ∈ TpM ,

(π∗g)p(u, v) = g(dπp(u), dπp(v)).

We need to check that (π∗g)p is an inner product, which is very easy since dπp is a linear
isomorphism. Our map, π, between the two Riemannian manifolds (M, π∗g) and (N, g)
becomes a local isometry. Now, every metric on M making π a local isometry has to satisfy
the equation defining, π∗g, so this metric is unique.

As a corollary of Proposition 13.10 and Theorem 3.35, every connected Riemmanian
manifold, M , has a simply connected covering map, π : �M → M , where π is a Riemannian
covering. Furthermore, if π : M → N is a Riemannian covering and ϕ : P → N is a local
isometry, it is easy to see that its lift, �ϕ : P → M , is also a local isometry. In particular, the
deck-transformations of a Riemannian covering are isometries.

In general, a local isometry is not a Riemannian covering. However, this is the case when
the source space is complete.

Proposition 13.11 Let π : M → N be a local isometry with N connected. If M is a com-
plete manifold, then π is a Riemannian covering map.

Proof . We follow the proof in Sakai [130] (Chapter III, Theorem 5.4). Because π is a local
isometry, geodesics in M can be projected onto geodesics in N and geodesics in N can be
lifted back to M . The proof makes heavy use of these facts.

First, we prove that N is complete. Pick any p ∈ M and let q = π(p). For any geodesic,
γu, of N with initial point, q ∈ N , and initial direction the unit vector, u ∈ TqN , consider
the geodesic, �γu, of M , with initial point p and with u = dπ−1

q
(v) ∈ TpM . As π is a local

isometry, it preserves geodesic, so
γv = π ◦ �γu,

and since �γu is defined on R because M is complete, so if γv. As expq
is defined on the whole

of TqN , by Hopf-Rinow, N is complete.

Next, we prove that π is surjective. As N is complete, for any q1 ∈ N , there is a minimal
geodesic, γ : [0, b] → N , joining q to q1 and for the geodesic, �γ, in M , emanating from p and
with initial direction dπ−1

q
(γ�(0)), we have π(�γ(b)) = γ(b) = q1, establishing surjectivity.

For any q ∈ N , pick r > 0 wih r < i(q), where i(q) denotes the injectivity radius of N at
q and consider the open metric ball, Br(q) = exp

q
(B(0q, r)) (where B(0q, r) is the open ball

of radius r in TqN). Let
π−1(q) = {pi}i∈I ⊆ M.

We claim that the following properties hold:

(1) Each map, π � Br(pi) : Br(pi) −→ Br(q), is a diffeomorphism, in fact, an isometry.

(2) π−1(Br(q)) =
�

i∈I Br(pi).
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(3) Br(pi) ∩ Br(pj) = ∅ whenever i �= j.

It follows from (1), (2) and (3) that Br(q) is evenly covered by the family of open sets,
{Br(pi)}i∈I , so π is a covering map.

(1) Since π is a local isometry, it maps geodesics emanating from pi to geodesics emanating
from q so the following diagram commutes:

B(0pi , r)

exppi
��

dπpi �� B(0q, r)

expq
��

Br(pi) π
�� Br(q).

Since exp
q
◦dπpi is a diffeomorphism, π � Br(pi) must be injective and since exp

pi
is surjective,

so is π � Br(pi). Then, π � Br(pi) is a bijection and as π is a local diffeomorphism, π � Br(pi)
is a diffeomorphism.

(2) Obviously,
�

i∈I Br(pi) ⊆ π−1(Br(q)), by (1). Conversely, pick p1 ∈ π−1(Br(q)). For
q1 = π(p1), we can write q1 = exp

q
v, for some v ∈ B(0q, r) and the map γ(t) = exp

q
(1− t)v,

for t ∈ [0, 1], is a geodesic in N joining q1 to q. Then, we have the geodesic, �γ, emanating
from p1 with initial direction dπ−1

q1
(γ�(0)) and as π ◦ �γ(1) = γ(1) = q, we have �γ(1) = pi for

some α. Since γ has length less than r, we get p1 ∈ Br(pi).

(3) Suppose p1 ∈ Br(pi) ∩ Br(pj). We can pick a minimal geodesic, �γ, in Br(pi), (resp
�ω in Br(pj)) joining pi to p (resp. joining pj to p). Then, the geodesics π ◦ �γ and π ◦ �ω
are geodesics in Br(q) from q to π(p1) and their length is less than r. Since r < i(q), these
geodesics are minimal so they must coincide. Therefore, γ = ω, which implies i = j.

13.6 The Second Variation Formula and the
Index Form

In Section 12.4, we discovered that the geodesics are exactly the critical paths of the energy
functional (Theorem 12.19). For this, we derived the First Variation Formula (Theorem
12.18). It is not too surprising that a deeper understanding is achieved by investigating the
second derivative of the energy functional at a critical path (a geodesic). By analogy with
the Hessian of a real-valued function on R

n, it is possible to define a bilinear functional,

Iγ : TγΩ(p, q)× TγΩ(p, q) → R,

when γ is a critical point of the energy function, E (that is, γ is a geodesic). This bilinear
form is usually called the index form. Note that Milnor denotes Iγ by E∗∗ and refers to it
as the Hessian of E but this is a bit confusing since Iγ is only defined for critical points,
whereas the Hessian is defined for all points, critical or not.
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Now, if f : M → R is a real-valued function on a finite-dimensional manifold, M , and if
p is a critical point of f , which means that dfp = 0, it is not hard to prove that there is a
symmetric bilinear map, I : TpM × TpM → R, such that

I(X(p), Y (p)) = Xp(Y f) = Yp(Xf),

for all vector fields, X, Y ∈ X(M). Furthermore, I(u, v) can be computed as follows, for any
u, v ∈ TpM : for any smooth map, α : R2 → R, such that

α(0, 0) = p,
∂α

∂x
(0, 0) = u,

∂α

∂y
(0, 0) = v,

we have

I(u, v) =
∂2(f ◦ α)(x, y)

∂x∂y

����
(0,0)

.

The above suggests that in order to define

Iγ : TγΩ(p, q)× TγΩ(p, q) → R,

that is, to define Iγ(W1,W2), where W1,W2 ∈ TγΩ(p, q) are vector fields along γ (with
W1(0) = W2(0) = 0 and W1(1) = W2(1) = 0), we consider 2-parameter variations,

α : U × [0, 1] → M,

where U is an open subset of R2 with (0, 0) ∈ U , such that

α(0, 0, t) = γ(t),
∂α

∂u1
(0, 0, t) = W1(t),

∂α

∂u2
(0, 0, t) = W2(t).

Then, we set

Iγ(W1,W2) =
∂2(E ◦ �α)(u1, u2)

∂u1∂u2

����
(0,0)

,

where �α ∈ Ω(p, q) is the path given by

�α(u1, u2)(t) = α(u1, u2, t).

For simplicity of notation, the above derivative if often written as ∂
2
E

∂u1∂u2
(0, 0).

To prove that Iγ(W1,W2) is actually well-defined, we need the following result:

Theorem 13.12 (Second Variation Formula) Let α : U × [0, 1] → M be a 2-parameter vari-
ation of a geodesic, γ ∈ Ω(p, q), with variation vector fields W1,W2 ∈ TγΩ(p, q) given by

W1(t) =
∂α

∂u1
(0, 0, t), W2(t) =

∂α

∂u2
(0, 0, t).
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Then, we have the formula

1

2

∂2(E ◦ �α)(u1, u2)

∂u1∂u2

����
(0,0)

= −
�

t

�
W2(t),∆t

dW1

dt

�
−

� 1

0

�
W2,

D2W1

dt2
+R(V,W1)V

�
dt,

where V (t) = γ�(t) is the velocity field,

∆t

dW1

dt
=

dW1

dt
(t+)−

dW1

dt
(t−)

is the jump in dW1
dt

at one of its finitely many points of discontinuity in (0, 1) and E is the
energy function on Ω(p, q).

Proof . (After Milnor, see [106], Chapter II, Section 13, Theorem 13.1.) By the First Varia-
tion Formula (Theorem 12.18), we have

1

2

∂E(�α(u1, u2))

∂u2
= −

�

i

�
∂α

∂u2
,∆t

∂α

∂t

�
−

� 1

0

�
∂α

∂u2
,
D

∂t

∂α

∂t

�
dt.

Thus, we get

1

2

∂2(E ◦ �α)(u1, u2)

∂u1∂u2
= −

�

i

�
D

∂u1

∂α

∂u2
,∆t

∂α

∂t

�
−

�

i

�
∂α

∂u2
,
D

∂u1
∆t

∂α

∂t

�

−
� 1

0

�
D

∂u1

∂α

∂u2
,
D

∂t

∂α

∂t

�
dt−

� 1

0

�
∂α

∂u2
,
D

∂u1

D

∂t

∂α

∂t

�
dt.

Let us evaluate this expression for (u1, u2) = (0, 0). Since γ = �α(0, 0) is an unbroken geodesic,
we have

∆t

∂α

∂t
= 0,

D

∂t

∂α

∂t
= 0,

so that the first and third term are zero. As

D

∂u1

∂α

∂t
=

D

∂t

∂α

∂u1
,

(see the remark just after Proposition 13.3), we can rewrite the second term and we get

1

2

∂2(E ◦ �α)(u1, u2)

∂u1∂u2
(0, 0) = −

�

i

�
W2,∆t

D

∂t
W1

�
−
� 1

0

�
W2,

D

∂u1

D

∂t
V

�
dt. (∗)

In order to interchange the operators D

∂u1
and D

∂t
, we need to bring in the curvature tensor.

Indeed, by Proposition 13.3, we have

D

∂u1

D

∂t
V − D

∂t

D

∂u1
V = R

�
∂α

∂t
,
∂α

∂u1

�
V = R(V,W1)V.
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Together with the equation

D

∂u1
V =

D

∂u1

∂α

∂t
=

D

∂t

∂α

∂u1
=

D

∂t
W1,

this yields
D

∂u1

D

∂t
V =

D2W1

dt2
+R(V,W1)V.

Substituting this last expression in (∗), we get the Second Variation Formula.

Theorem 13.12 shows that the expression

∂2(E ◦ �α)(u1, u2)

∂u1∂u2

����
(0,0)

only depends on the variation fields W1 and W2 and thus, Iγ(W1,W2) is actually well-defined.
If no confusion arises, we write I(W1,W2) for Iγ(W1,W2).

Proposition 13.13 Given any geodesic, γ ∈ Ω(p, q), the map, I : TγΩ(p, q)×TγΩ(p, q) → R,
defined so that, for all W1,W2 ∈ TγΩ(p, q),

I(W1,W2) =
∂2(E ◦ �α)(u1, u2)

∂u1∂u2

����
(0,0)

,

only depends on W1 and W2 and is bilinear and symmetric, where α : U × [0, 1] → M is any
2-parameter variation, with

α(0, 0, t) = γ(t),
∂α

∂u1
(0, 0, t) = W1(t),

∂α

∂u2
(0, 0, t) = W2(t).

Proof . We already observed that the Second Variation Formula implies that I(W1,W2) is
well defined. This formula also shows that I is bilinear. As

∂2(E ◦ �α)(u1, u2)

∂u1∂u2
=

∂2(E ◦ �α)(u1, u2)

∂u2∂u1
,

I is symmetric (but this is not obvious from the right-handed side of the Second Variation
Formula).

On the diagonal, I(W,W ) can be described in terms of a 1-parameter variation of γ. In
fact,

I(W,W ) =
d2E(�α)
du2

(0),

where �α : (−�, �) → Ω(p, q) denotes any variation of γ with variation vector field, d�α
du

(0) equal
to W . To prove this equation it is only necessary to introduce the 2-parameter variation

�β(u1, u2) = �α(u1 + u2)
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and to observe that
∂�β
∂ui

=
d�α
du

,
∂2(E ◦ �β)
∂u1∂u2

=
d2(E ◦ �α)

du2
.

As an application of the above remark we have the following result:

Proposition 13.14 If γ ∈ Ω(p, q) is a minimal geodesic, then the bilinear index form, I, is
positive semi-definite, which means that I(W,W ) ≥ 0, for all W ∈ TγΩ(p, q).

Proof . The inequality
E(�α(u)) ≥ E(γ) = E(�α(0))

implies that
d2E(�α)
du2

(0) ≥ 0,

which is exactly what needs to be proved.

If we define the index of

I : TγΩ(p, q)× TγΩ(p, q) → R

as the maximum dimension of a subspace of TγΩ(p, q) on which I is negative definite, then
Proposition 13.14 says that the index of I is zero (for the minimal geodesic γ). It turns out
that the index of I is finite for any geodesic, γ (this is a consequence of the Morse Index
Theorem).

13.7 Jacobi Fields and Conjugate Points

Jacobi fields arise naturally when considering the expression involved under the integral sign
in the Second Variation Formula and also when considering the derivative of the exponential.

If B : E×E → R is a symmetric bilinear form defined on some vector space, E (possibly
infinite dimentional), recall that the nullspace of B is the subset, null(B), of E given by

null(B) = {u ∈ E | B(u, v) = 0, for all v ∈ E}.

The nullity , ν, of B is the dimension of its nullspace. The bilinear form, B, is nondegenerate
iff null(B) = (0) iff ν = 0. If U is a subset of E, we say that B is positive definite (resp.
negative definite) on U iff B(u, u) > 0 (resp. B(u, u) < 0) for all u ∈ U , with u �= 0. The
index of B is the maximum dimension of a subspace of E on which B is negative definite.
We will determine the nullspace of the symmetric bilinear form,

I : TγΩ(p, q)× TγΩ(p, q) → R,
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where γ is a geodesic from p to q in some Riemannian manifold, M . Now, if W is a vector
field in TγΩ(p, q) and W satisfies the equation

D2W

dt2
+R(V,W )V = 0, (∗)

where V (t) = γ�(t) is the velocity field of the geodesic, γ, since W is smooth along γ, it is
obvious from the Second Variation Formula that

I(W,W2) = 0, for all W2 ∈ TγΩ(p, q).

Therefore, any vector field in the nullspace of I must satisfy equation (∗). Such vector fields
are called Jacobi fields .

Definition 13.7 Given a geodesic, γ ∈ Ω(p, q), a vector field, J , along γ is a Jacobi field iff
it satisfies the Jacobi differential equation

D2J

dt2
+R(γ�, J)γ� = 0.

The equation of Definition 13.7 is a linear second-order differential equation that can be
transformed into a more familiar form by picking some orthonormal parallel vector fields,
X1, . . . , Xn, along γ. To do this, pick any orthonormal basis, (e1, . . . , en) in TpM , with
e1 = γ�(0)/ �γ�(0)�, and use parallel transport along γ to get X1, . . . , Xn. Then, we can
write J =

�
n

i=1 yiXi, for some smooth functions, yi, and the Jacobi equation becomes the
system of second-order linear ODE’s,

d2yi
dt2

+
n�

j=1

R(γ�, Ej, γ
�, Ei)yj = 0, 1 ≤ i ≤ n.

By the existence and uniqueness theorem for ODE’s, for every pair of vectors, u, v ∈ TpM ,
there is a unique Jacobi fields, J , so that J(0) = u and DJ

dt
(0) = v. Since TpM has dimension

n, it follows that the dimension of the space of Jacobi fields along γ is 2n. If J(0) and DJ

dt
(0)

are orthogonal to γ�(0), then J(t) is orthogonal to γ�(t) for all t ∈ [0, 1]. Indeed, the ODE
for d

2
y1

dt2
yields

d2y1
dt2

= 0,

and as y1(0) = 0 and dy1

dt
(0) = 0, we get y1(t) = 0 for all t ∈ [0, 1]. Furthermore, if J is

orthogonal to γ, which means that J(t) is orthogonal to γ�(t), for all t ∈ [0, 1], then DJ

dt
is

also orthogonal to γ. Indeed, as γ is a geodesic,

0 =
d

dt
�J, γ�� = �DJ

dt
, γ��.

Therefore, the dimension of the space of Jacobi fields normal to γ is 2n − 2. These facts
prove part of the following
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Proposition 13.15 If γ ∈ Ω(p, q) is a geodesic in a Riemannian manifold of dimension n,
then the following properties hold:

(1) For all u, v ∈ TpM , there is a unique Jacobi fields, J , so that J(0) = u and DJ

dt
(0) = v.

Consequently, the vector space of Jacobi fields has dimension n.

(2) The subspace of Jacobi fields orthogonal to γ has dimension 2n− 2. The vector fields
γ� and t �→ tγ�(t) are Jacobi fields that form a basis of the subspace of Jacobi fields
parallel to γ (that is, such that J(t) is collinear with γ�(t), for all t ∈ [0, 1].)

(3) If J is a Jacobi field, then J is orthogonal to γ iff there exist a, b ∈ [0, 1], with a �= b,
so that J(a) and J(b) are both orthogonal to γ iff there is some a ∈ [0, 1] so that J(a)
and DJ

dt
(a) are both orthogonal to γ.

(4) For any two Jacobi fields, X, Y , along γ, the expression �∇γ�X, Y � − �∇γ�Y,X� is a
constant and if X and Y vanish at some point on γ, then �∇γ�X, Y � − �∇γ�Y,X� = 0.

Proof . We already proved (1) and part of (2). If J is parallel to γ, then J(t) = f(t)γ(t) and
the Jacobi equation becomes

d2f

dt
= 0.

Therefore,
J(t) = (α + βt)γ�(t).

It is easily shown that γ� and t �→ tγ�(t) are linearly independent (as vector fields).

To prove (3), using the Jacobi equation, observe that

d2

dt2
�J, γ�� = �D

2J

dt2
, γ�� = −R(J, γ�, γ�, γ�) = 0.

Therefore,
�J, γ�� = α + βt

and the result follows. We leave (4) as an exercise.

Following Milnor, we will show that the Jacobi fields in TγΩ(p, q) are exactly the vector
fields in the nullspace of the index form, I. First, we define the important notion of conjugate
points.

Definition 13.8 Let γ ∈ Ω(p, q) be a geodesic. Two distinct parameter values, a, b ∈ [0, 1],
with a < b, are conjugate along γ iff there is some Jacobi field, J , not identically zero, such
that J(a) = J(b) = 0. The dimension, k, of the space, Ja,b, consisting of all such Jacobi
fields is called the multiplicity (or order of conjugacy) of a and b as conjugate parameters.
We also say that the points p1 = γ(a) and p2 = γ(b) are conjugate along γ.
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Remark: As remarked by Milnor and others, as γ may have self-intersections, the above
definition is ambiguous if we replace a and b by p1 = γ(a) and p2 = γ(b), even though many
authors make this slight abuse. Although it makes sense to say that the points p1 and p2
are conjugate, the space of Jacobi fields vanishing at p1 and p2 is not well defined. Indeed,
if p1 = γ(a) for distinct values of a (or p2 = γ(b) for distinct values of b), then we don’t
know which of the spaces, Ja,b, to pick. We will say that some points p1 and p2 on γ are
conjugate iff there are parameter values, a < b, such that p1 = γ(a), p2 = γ(b), and a and b
are conjugate along γ.

However, for the endpoints p and q of the geodesic segment γ, we may assume that
p = γ(0) and q = γ(1), so that when we say that p and q are conjugate we consider the space
of Jacobi fields vanishing for t = 0 and t = 1. This is the definition adopted Gallot, Hulin
and Lafontaine [60] (Chapter 3, Section 3E).

In view of Proposition 13.15 (3), the Jacobi fields involved in the definition of conjugate
points are orthogonal to γ. The dimension of the space of Jacobi fields such that J(a) = 0 is
obviously n, since the only remaining parameter determining J is dJ

dt
(a). Furthermore, the

Jacobi field, t �→ (t − a)γ�(t), vanishes at a but not at b, so the multiplicity of conjugate
parameters (points) is at most n− 1.

For example, if M is a flat manifold, that is, iff its curvature tensor is identically zero,
then the Jacobi equation becomes

D2J

dt2
= 0.

It follows that J ≡ 0, and thus, there are no conjugate points. More generally, the Jacobi
equation can be solved explicitly for spaces of constant curvature.

Theorem 13.16 Let γ ∈ Ω(p, q) be a geodesic. A vector field, W ∈ TγΩ(p, q), belongs to
the nullspace of the index form, I, iff W is a Jacobi field. Hence, I is degenerate if p and q
are conjugate. The nullity of I is equal to the multiplicity of p and q.

Proof . (After Milnor [106], Theorem 14.1). We already observed that a Jacobi field vanishing
at 0 and 1 belong to the nullspace of I.

Conversely, assume that W1 ∈ TγΩ(p, q) belongs to the nullspace of I. Pick a subdivision,
0 = t0 < t1 < · · · < tk = 1 of [0, 1] so that W1 � [ti, ti+1] is smooth for all i = 0, . . . , k− 1 and
let f : [0, 1] → [0, 1] be a smooth function which vanishes for the parameter values t0, . . . , tk
and is strictly positive otherwise. Then, if we let

W2(t) = f(t)

�
D2W1

dt2
+R(γ�,W1)γ

�
�

t

,

by the Second Variation Formula, we get

0 = −1

2
I(W1,W2) =

�
0 +

� 1

0

f(t)

����
D2W1

dt2
+R(γ�,W1)γ

�
����
2

dt.
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Consequently, W1 � [ti, ti+1] is a Jacobi field for all i = 0, . . . , k − 1.

Now, let W �
2 ∈ TγΩ(p, q) be a field such that

W �
2(ti) = ∆ti

DW1

dt
, i = 1, . . . , k − 1.

We get

0 = −1

2
I(W1,W

�
2) =

k−1�

i=1

����∆ti

DW1

dt

����
2

+

� 1

0

0 dt.

Hence, DW1
dt

has no jumps. Now, a solution, W1, of the Jacobi equation is completely
determined by the vectors W1(ti) and DW1

dt
(ti), so the k Jacobi fields, W1 � [ti, ti+1], fit

together to give a Jacobi field, W1, which is smooth throughout [0, 1].

Theorem 13.16 implies that the nullity of I is finite, since the vector space of Jacobi fields
vanishing at 0 and 1 has dimension at most n. In fact, we observed that the dimension of
this space is at most n− 1.

Corollary 13.17 The nullity, ν, of I satisfies 0 ≤ ν ≤ n− 1, where n = dim(M).

Jacobi fields turn out to be induced by certain kinds of variations called geodesic varia-
tions .

Definition 13.9 Given a geodesic, γ ∈ Ω(p, q), a geodesic variation of γ is a smooth map,

α : (−�, �)× [0, 1] → M,

such that

(1) α(0, t) = γ(t), for all t ∈ [0, 1].

(2) For every u ∈ (−�, �), the curve �α(u) is a geodesic, where

�α(u)(t) = α(u, t), t ∈ [0, 1].

Note that the geodesics, �α(u), do not necessarily begin at p and end at q and so, a
geodesic variation is not a “fixed endpoints” variation.

Proposition 13.18 If α : (−�, �) × [0, 1] → M is a geodesic variation of γ ∈ Ω(p, q), then
the vector field, W (t) = ∂α

∂u
(0, t), is a Jacobi field along γ.
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Proof . As α is a geodesic variation, we have

D

dt

∂α

∂t
= 0.

Hence, using Proposition 13.3, we have

0 =
D

∂u

D

∂t

∂α

∂t

=
D

∂t

D

∂u

∂α

∂t
+R

�
∂α

∂t
,
∂α

∂u

�
∂α

∂t

=
D2

∂t2
∂α

∂u
+R

�
∂α

∂t
,
∂α

∂u

�
∂α

∂t
,

where we used the fact (already used before) that

D

∂t

∂α

∂u
=

D

∂u

∂α

∂t
,

as the Levi-Civita connection is torsion-free.

For example, on the sphere, Sn, for any two antipodal points, p and q, rotating the sphere
keeping p and q fixed, the variation field along a geodesic, γ, through p and q (a great circle)
is a Jacobi field vanishing at p and q. Rotating in n−1 different directions one obtains n−1
linearly independent Jacobi fields and thus, p and q are conjugate along γ with multiplicity
n− 1.

Interestingly, the converse of Proposition 13.18 holds.

Proposition 13.19 For every Jacobi field, W (t), along a geodesic, γ ∈ Ω(p, q), there is
some geodesic variation, α : (−�, �) × [0, 1] → M of γ, such that W (t) = ∂α

∂u
(0, t). Further-

more, for every point, γ(a), there is an open subset, U , containing γ(a), such that the Jacobi
fields along a geodesic segment in U are uniquely determined by their values at the endpoints
of the geodesic.

Proof . (After Milnor, see [106], Chapter III, Lemma 14.4.) We begin by proving the second
assertion. By Proposition 12.4 (1), there is an open subset, U , with γ(0) ∈ U , so that any
two points of U are joined by a unique minimal geodesic which depends differentially on the
endpoints. Suppose that γ(t) ∈ U for t ∈ [0, δ]. We will construct a Jacobi field, W , along
γ � [0, δ] with arbitrarily prescribed values, u, at t = 0 and v at t = δ. Choose some curve,
c0 : (−�, �) → U , so that c0(0) = γ(0) and c�0(0) = u and some curve, cδ : (−�, �) → U , so
that cδ(0) = γ(δ) and c�

δ
(0) = v. Now, define the map,

α : (−�, �)× [0, δ] → M,

by letting �α(u) : [0, δ] → M be the unique minimal geodesic from c0(u) to cδ(u). It is easily
checked that α is a geodesic variation of γ � [0, δ] and that

J(t) =
∂α

∂u
(0, t)
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is a Jacobi field such that J(0) = u and J(δ) = v.

We claim that every Jacobi field along γ � [0, δ] can be obtained uniquely in this way.
If Jδ denotes the vector space of all Jacobi fields along γ � [0, δ], the map J �→ (J(0), J(δ))
defines a linear map

� : Jδ → Tγ(0)M × Tγ(δ)M.

The above argument shows that � is onto. However, both vector spaces have the same
dimension, 2n, so � is an isomorphism. Therefore, every Jacobi field in Jδ is determined by
its values at γ(0) and γ(δ).

Now, the above argument can be repeated for every point, γ(a), on γ, so we get an open
cover, {(la, ra)}, of [0, 1], such that every Jacobi field along γ � [la, ra] is uniquely determined
by its endpoints. By compactness of [0, 1], the above cover possesses some finite subcover
and we get a geodesic variation, α, defined on the entire interval [0, 1] whose variation field
is equal to the original Jacobi field, W .

Remark: The proof of Proposition 13.19 also shows that there is some open interval (−δ, δ),
such that if t ∈ (−δ, δ), then γ(t) is not conjugate to γ(0) along γ. In fact, the Morse Index
Theorem implies that for any geodesic segment, γ : [0, 1] → M , there are only finitely many
points which are conjugate to γ(0) along γ (see Milnor [106], Part III, Corollary 15.2).

There is also an intimate connection between Jacobi fields and the differential of the
exponential map and between conjugate points and critical points of the exponential map.

Recall that if f : M → N is a smooth map between manifolds, a point, p ∈ M , is a
critical point of f iff the tangent map at p,

dfp : TpM → Tf(p)N,

is not surjective. If M and N have the same dimension, which will be the case in the sequel,
dfp is not surjective iff it is not injective, so p is a critical point of f iff there is some nonzero
vector, u ∈ TpM , such that dfp(u) = 0.

If exp
p
: TpM → M is the exponential map, for any v ∈ TpM where exp

p
(v) is defined,

we have the derivative of exp
p
at v;

(d exp
p
)v : Tv(TpM) → TpM.

Since TpM is a finite-dimensional vector space, Tv(TpM) is isomorphic to TpM , so we identify
Tv(TpM) with TpM .

Proposition 13.20 Let γ ∈ Ω(p, q) be a geodesic. The point, r = γ(t), with t ∈ (0, 1], is
conjugate to p along γ iff v = tγ�(0) is a critical point of exp

p
. Furthermore, the multiplicity

of p and r as conjugate points is equal to the dimension of the kernel of (d exp
p
)v.
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A proof of Proposition 13.20 can be found in various places, including Do Carmo [50]
(Chapter 5, Proposition 3.5), O’Neill [119] (Chapter 10, Proposition 10), or Milnor [106]
(Part III, Theorem 18.1).

Using Proposition 13.19 it is easy to characterize conjugate points in terms of geodesic
variations.

Proposition 13.21 If γ ∈ Ω(p, q) is a geodesic, then q is conjugate to p iff there is a
geodesic variation, α, of γ, such that every geodesic, �α(u), starts from p, the Jacobi field,
J(t) = ∂α

∂u
(0, t) does not vanish identically, and J(1) = 0.

Jacobi fields can also be used to compute the derivative of the exponential (see Gallot,
Hulin and Lafontaine [60], Chapter 3, Corollary 3.46).

Proposition 13.22 Given any point, p ∈ M , for any vectors u, v ∈ TpM , if exp
p
v is

defined, then
J(t) = (d exp

p
)tv(tu), 0 ≤ t ≤ 1,

is a Jacobi field such that DJ

dt
(0) = u.

Remark: If u, v ∈ TpM are orthogonal unit vectors, then R(u, v, u, v) = K(u, v), the sec-
tional curvature of the plane spanned by u and v in TpM , and for t small enough, we have

�J(t)� = t− 1

6
K(u, v)t3 + o(t3).

(Here, o(t3) stands for an expression of the form t4R(t), such that limt �→0 R(t) = 0.) Intu-
itively, this formula tells us how fast the geodesics that start from p and are tangent to the
plane spanned by u and v spread apart. Locally, for K(u, v) > 0, the radial geodesics spread
apart less than the rays in TpM and for K(u, v) < 0, they spread apart more than the rays
in TpM . More details, see Do Carmo [50] (Chapter 5, Section 2).

There is also another version of “Gauss lemma” (see Gallot, Hulin and Lafontaine [60],
Chapter 3, Lemma 3.70):

Proposition 13.23 (Gauss Lemma) Given any point, p ∈ M , for any vectors u, v ∈ TpM ,
if exp

p
v is defined, then

�d(exp
p
)tv(u), d(expp

)tv(v)� = �u, v�, 0 ≤ t ≤ 1.

As our (connected) Riemannian manifold, M , is a metric space, the path space, Ω(p, q),
is also a metric space if we use the metric, d∗, given by

d∗(ω1,ω2) = max
t

(d(ω1(t),ω2(t))),

where d is the metric on M induced by the Riemannian metric.

Remark: The topology induced by d∗ turns out to be the compact open topology on Ω(p, q).
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Theorem 13.24 Let γ ∈ Ω(p, q) be a geodesic. Then, the following properties hold:

(1) If there are no conjugate points to p along γ, then there is some open subset, V, of
Ω(p, q), with γ ∈ V, such that

L(ω) ≥ L(γ) and E(ω) ≥ E(γ), for all ω ∈ V ,

with strict inequality when ω([0, 1]) �= γ([0, 1]). We say that γ is a local minimum.

(2) If there is some t ∈ (0, 1) such that p and γ(t) are conjugate along γ, then there is a
fixed endpoints variation, α, such that

L(�α(u)) < L(γ) and E(�α(u)) < E(γ), for u small enough.

A proof of Theorem 13.24 can be found in Gallot, Hulin and Lafontaine [60] (Chapter 3,
Theorem 3.73) or in O’Neill [119] (Chapter 10, Theorem 17 and Remark 18).

13.8 Convexity, Convexity Radius

Proposition 12.4 shows that if (M, g) is a Riemannian manifold, then for every point, p ∈ M ,
there is an open subset, W ⊆ M , with p ∈ W and a number � > 0, so that any two points
q1, q2 of W are joined by a unique geodesic of length < �. However, there is no garantee that
this unique geodesic between q1 and q2 stays inside W . Intuitively this says that W may not
be convex.

The notion of convexity can be generalized to Riemannian manifolds but there are some
subtleties. In this short section, we review various definition or convexity found in the
literature and state one basic result. Following Sakai [130] (Chapter IV, Section 5), we make
the following definition:

Definition 13.10 Let C ⊆ M be a nonempty subset of some Riemannian manifold, M .

(1) The set C is called strongly convex iff for any two points, p, q ∈ C, there exists a unique
minimal geodesic, γ, from p to q in M and γ is contained in C.

(2) If for every point, p ∈ C, there is some �(p) > 0, so that C∩B�(p)(p) is strongly convex,
then we say that C is locally convex (where B�(p)(p) is the metric ball of center 0 and
radius �(p)).

(3) The set C is called totally convex iff for any two points, p, q ∈ C, all geodesics from p
to q in M are contained in C.

It is clear that if C is strongly convex or totally convex, then C is locally convex. If M
is complete and any two points are joined by a unique geodesic, then the three conditions
of Definition 13.10 are equivalent. The next Proposition will show that a metric ball with
sufficiently small radius is strongly convex.
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Definition 13.11 For any p ∈ M , the convexity radius at p, denoted, r(p), is the least
upper bound of the numbers, r > 0, such that for any metric ball, B�(q), if B�(q) ⊆ Br(p),
then B�(q) is strongly convex and every geodesic contained in Br(p) is a minimal geodesic
joining its endpoints. The convexity radius of M , r(M), as the greatest lower bound of the
set {r(p) | p ∈ M}.

Note that it is possible that r(p) = 0 if M is not compact.

The following proposition is proved in Sakai [130] (Chapter IV, Section 5, Theorem 5.3).

Proposition 13.25 If M is a Riemannian manifold, then r(p) > 0 for every p ∈ M and
the map, p �→ r(p) ∈ R+ ∪ {∞} is continuous. Furthermore, if r(p) = ∞ for some p ∈ M ,
then r(q) = ∞ for all q ∈ M .

That r(p) > 0 is also proved in Do Carmo [50] (Chapter 3, Section 4, Proposition 4.2).
More can be said about the structure of connected locally convex subsets of M , see Sakai
[130] (Chapter IV, Section 5).

Remark: The following facts are stated in Berger [16] (Chapter 6):

(1) If M is compact, then the convexity radius, r(M), is strictly positive.

(2) r(M) ≤ 1
2i(M), where i(M) is the injectivity radius of M .

Berger also points out that if M is compact, then the existence of a finite cover by convex
balls can used to triangulateM . This method was proposed by Hermann Karcher (see Berger
[16], Chapter 3, Note 3.4.5.3).

13.9 Applications of Jacobi Fields and
Conjugate Points

Jacobi fields and conjugate points are basic tools that can be used to prove many global
results of Riemannian geometry. The flavor of these results is that certain constraints on
curvature (sectional, Ricci, sectional) have a significant impact on the topology. One may
want consider the effect of non-positive curvature, constant curvature, curvature bounded
from below by a positive constant, etc. This is a vast subject and we highly recommend
Berger’s Panorama of Riemannian Geometry [16] for a masterly survey. We will content
ourselves with three results:

(1) Hadamard and Cartan’s Theorem about complete manifolds of non-positive sectional
curvature.
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(2) Myers’ Theorem about complete manifolds of Ricci curvature bounded from below by
a positive number.

(3) The Morse Index Theorem.

First, on the way to Hadamard and Cartan we begin with a proposition.

Proposition 13.26 Let M be a complete Riemannian manifold with non-positive curvature,
K ≤ 0. Then, for every geodesic, γ ∈ Ω(p, q), there are no conjugate points to p along
γ. Consequently, the exponential map, exp

p
: TpM → M , is a local diffeomorphism for all

p ∈ M .

Proof . Let J be a Jacobi field along γ. Then,

D2J

dt2
+R(γ�, J)γ� = 0

so that, by the definition of the sectional curvature,

�
D2J

dt2
, J

�
= −�R(γ�, J)γ�, J) = −R(γ�, J, γ�, J) ≥ 0.

It follows that
d

dt

�
DJ

dt
, J

�
=

�
D2J

dt2
, J

�
+

����
DJ

dt

����
2

≥ 0.

Thus, the function, t �→
�
DJ

dt
, J

�
is monotonic increasing and, strictly so if DJ

dt
�= 0. If J

vanishes at both 0 and t, for any given t ∈ (0, 1], then so does
�
DJ

dt
, J

�
, and hence

�
DJ

dt
, J

�

must vanish throughout the interval [0, t]. This implies

J(0) =
DJ

dt
(0) = 0,

so that J is identically zero. Therefore, t is not conjugate to 0 along γ.

Theorem 13.27 (Hadamard–Cartan) Let M be a complete Riemannian manifold. If M
has non-positive sectional curvature, K ≤ 0, then the following hold:

(1) For every p ∈ M , the map, exp
p
: TpM → M , is a Riemannian covering.

(2) If M is simply connected then M is diffeomorphic to R
n, where n = dim(M); more

precisely, exp
p
: TpM → M is a diffeomorphism for all p ∈ M . Furthermore, any two

points on M are joined by a unique minimal geodesic.
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Proof . We follow the proof in Sakai [130] (Chapter V, Theorem 4.1).

(1) By Proposition 13.26, the exponential map, exp
p
: TpM → M , is a local diffeomor-

phism for all p ∈ M . Let �g be the pullback metric, �g = (exp
p
)∗g, on TpM (where g denotes

the metric on M). We claim that (TpM, �g) is complete.

This is because, for every nonzero u ∈ TpM , the line, t �→ tu, is mapped to the geodesic,
t �→ exp

p
(tu), in M , which is defined for all t ∈ R since M is complete, and thus, this line is

a geodedic in (TpM, �g). Since this holds for all u ∈ TpM , (TpM, �g) is geodesically complete
at 0, so by Hopf-Rinow, it is complete. But now, exp

p
: TpM → M is a local isometry and

by Proposition 13.11, it is a Riemannian covering map.

(2) IfM is simply connected, then by Proposition 3.38, the covering map exp
p
: TpM → M

is a diffeomorphism (TpM is connected). Therefore, exp
p
: TpM → M is a diffeomorphism

for all p ∈ M .

Other proofs of Theorem 13.27 can be found in Do Carmo [50] (Chapter 7, Theorem 3.1),
Gallot, Hulin and Lafontaine [60] (Chapter 3, Theorem 3.87), Kobayashi and Nomizu [90]
(Chapter VIII, Theorem 8.1) and Milnor [106] (Part III, Theorem 19.2).

Remark: A version of Theorem 13.27 was first proved by Hadamard and then extended by
Cartan.

Theorem 13.27 was generalized by Kobayashi, see Kobayashi and Nomizu [90] (Chapter
VIII, Remark 2 after Corollary 8.2). Also, it is shown in Milnor [106] that if M is complete,
assuming non-positive sectional curvature, then all homotopy groups, πi(M), vanish, for
i > 1, and that π1(M) has no element of finite order except the identity. Finally, non-
positive sectional curvature implies that the exponential map does not decrease distance
(Kobayashi and Nomizu [90], Chapter VIII, Section 8, Lemma 3).

We now turn to manifolds with strictly positive curvature bounded away from zero and
to Myers’ Theorem. The first version of such a theorem was first proved by Bonnet for
surfaces with positive sectional curvature bounded away from zero. It was then generalized
by Myers in 1941. For these reasons, this theorem is sometimes called the Bonnet-Myers’
Theorem. The proof of Myers Theorem involves a beautiful “trick”.

Given any metric space, X, recall that the diameter of X is defined by

diam(X) = sup{d(p, q) | p, q ∈ X}.

The diameter of X may be infinite.

Theorem 13.28 (Myers) Let M be a complete Riemannian manifold of dimension n and
assume that

Ric(u, u) ≥ (n− 1)/r2, for all unit vectors, u ∈ TpM , and for all p ∈ M,

with r > 0. Then,
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(1) The diameter of M is bounded by πr and M is compact.

(2) The fundamental group of M is finite.

Proof . (1) Pick any two points p, q ∈ M and let d(p, q) = L. As M is complete, by Hopf and
Rinow’s Theorem, there is a minimal geodesic, γ, joining p and q and by Proposition 13.14,
the bilinear index form, I, associated with γ is positive semi-definite, which means that
I(W,W ) ≥ 0, for all vector fields, W ∈ TγΩ(p, q). Pick an orthonormal basis, (e1, . . . , en),
of TpM , with e1 = γ�(0)/L. Using parallel transport, we get a field of orthonormal frames,
(X1, . . . , Xn), along γ, with X1(t) = γ�(t)/L. Now comes Myers’ beautiful trick. Define new
vector fields, Yi, along γ, by

Wi(t) = sin(πt)Xi(t), 2 ≤ i ≤ n.

We have

γ�(t) = LX1 and
DXi

dt
= 0.

Then, by the second variation formula,

1

2
I(Wi,Wi) = −

� 1

0

�
Wi,

D2Wi

dt2
+R(γ�,Wi)γ

�
�
dt

=

� 1

0

(sin(πt))2(π2 − L2 �R(X1, Xi)X1, Xi�)dt,

for i = 2, . . . , n. Adding up these equations and using the fact that

Ric(X1(t), X1(t)) =
n�

i=2

�R(X1(t), Xi(t))X1(t), Xi(t)�,

we get
1

2

n�

i=2

I(Wi,Wi) =

� 1

0

(sin(πt))2[(n− 1)π2 − L2 Ric(X1(t), X1(t))]dt.

Now, by hypothesis,
Ric(X1(t), X1(t)) ≥ (n− 1)/r2,

so

0 ≤ 1

2

n�

i=2

I(Wi,Wi) ≤
� 1

0

(sin(πt))2
�
(n− 1)π2 − (n− 1)

L2

r2

�
dt,

which implies L
2

r2
≤ π2, that is

d(p, q) = L ≤ πr.

As the above holds for every pair of points, p, q ∈ M , we conclude that

diam(M) ≤ πr.
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Since closed and bounded subsets in a complete manifold are compact, M itself must be
compact.

(2) Since the universal covering space, �M , of M has the pullback of the metric on M , this

metric satisfies the same assumption on its Ricci curvature as that of M . Therefore, �M is
also compact, which implies that the fundamental group, π1(M), is finite (see the discussion
at the end of Section 3.9).

Remarks:

(1) The condition on the Ricci curvature cannot be weakened to Ric(u, u) > 0 for all unit
vectors. Indeed, the paraboloid of revolution, z = x2+y2, satisfies the above condition,
yet it is not compact.

(2) Theorem 13.28 also holds under the stronger condition that the sectional curvature
K(u, v) satisfies

K(u, v) ≥ (n− 1)/r2,

for all orthonormal vectors, u, v. In this form, it is due to Bonnet (for surfaces).

It would be a pity not to include in this section a beautiful theorem due to Morse.

Theorem 13.29 (Morse Index Theorem) Given a geodesic, γ ∈ Ω(p, q), the index, λ, of
the index form, I : TγΩ(p, q) × TγΩ(p, q) → R, is equal to the number of points, γ(t), with
0 ≤ t ≤ 1, such that γ(t) is conjugate to p = γ(0) along γ, each such conjugate point counted
with its multiplicity. The index λ is always finite.

As a corollary of Theorem 13.29, we see that there are only finitely many points which
are conjugate to p = γ(0) along γ.

A proof of Theorem 13.29 can be found in Milnor [106] (Part III, Section 15) and also in
Do Carmo [50] (Chapter 11) or Kobayashi and Nomizu [90] (Chapter VIII, Section 6).

A key ingredient of the proof is that the vector space, TγΩ(p, q), can be split into a direct
sum of subspaces mutually orthogonal with respect to I, on one of which (denoted T �) I
is positive definite. Furthermore, the subspace orthogonal to T � is finite-dimensional. This
space is obtained as follows: Since for every point, γ(t), on γ, there is some open subset,
Ut, containing γ(t) such that any two points in Ut are joined by a unique minimal geodesic,
by compactness of [0, 1], there is a subdivision, 0 = t0 < t1 < · · · < tk = 1 of [0, 1] so that
γ � [ti, ti+1] lies within an open where it is a minimal geodesic.

Let TγΩ(t0, . . . , tk) ⊆ TγΩ(p, q) be the vector space consisting of all vector fields, W ,
along γ such that

(1) W � [ti, ti+1] is a Jacobi field along γ � [ti, ti+1], for i = 0, . . . , k − 1.

(2) W (0) = W (1) = 0.
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The space TγΩ(t0, . . . , tk) ⊆ TγΩ(p, q) is a finite-dimensional vector space consisting of
broken Jacobi fields. Let T � ⊆ TγΩ(p, q) be the vector space consisting of all vector fields,
W ∈ TγΩ(p, q), for which

W (ti) = 0, 0 ≤ i ≤ k.

It is not hard to prove that

TγΩ(p, q) = TγΩ(t0, . . . , tk)⊕ T �,

that TγΩ(t0, . . . , tk) and T � are orthogonal w.r.t I and that I � T � is positive definite. The
reason why I(W,W ) ≥ 0 for W ∈ T � is that each segment, γ � [ti, ti+1], is a minimal geodesic,
which has smaller energy than any other path between its endpoints.

As a consequence, the index (or nullity) of I is equal to the index (or nullity) of I
restricted to the finite dimensional vector space, TγΩ(t0, . . . , tk). This shows that the index
is always finite.

In the next section, we will use conjugate points to give a more precise characterization
of the cut locus.

13.10 Cut Locus and Injectivity Radius:
Some Properties

We begin by reviewing the definition of the cut locus from a slightly different point of view.
Let M be a complete Riemannian manifold of dimension n. There is a bundle, UM , called
the unit tangent bundle, such that the fibre at any p ∈ M is the unit sphere, Sn−1 ⊆ TpM
(check the details). As usual, we let π : UM → M denote the projection map which sends
every point in the fibre over p to p. Then, we have the function,

ρ : UM → R,

defined so that for all p ∈ M , for all v ∈ Sn−1 ⊆ TpM ,

ρ(v) = sup
t∈R∪{∞}

d(π(v), exp
p
(tv)) = t

= sup{t ∈ R ∪ {∞} | the geodesic t �→ exp
p
(tv) is minimal on [0, t]}.

The number ρ(v) is called the cut value of v. It can be shown that ρ is continuous and for
every p ∈ M , we let

�Cut(p) = {ρ(v)v ∈ TpM | v ∈ UM ∩ TpM, ρ(v) is finite}

be the tangential cut locus of p and

Cut(p) = exp
p
(�Cut(p))
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be the cut locus of p. The point, exp
p
(ρ(v)v), in M is called the cut point of the geodesic,

t �→ exp
p
(vt), and so, the cut locus of p is the set of cut points of all the geodesics emanating

from p. Also recall from Definition 12.7 that

Up = {v ∈ TpM | ρ(v) > 1}

and that Up is open and star-shaped. It can be shown that

�Cut(p) = ∂Up

and the following property holds:

Theorem 13.30 If M is a complete Riemannian manifold, then for every p ∈ M , the
exponential map, exp

p
, is a diffeomorphism between Up and its image,

exp
p
(Up) = M − Cut(p), in M .

Proof . The fact that exp
p
is injective on Up was shown in Proposition 12.16. Now, for any

v ∈ U , as t �→ exp
p
(tv) is a minimal geodesic for t ∈ [0, 1], by Theorem 13.24 (2), the

point exp
p
v is not conjugate to p, so d(exp

p
)v is bijective, which implies that exp

p
is a local

diffeomorphism. As exp
p
is also injective, it is a diffeomorphism.

Theorem 13.30 implies that the cut locus is closed.

Remark: In fact, M −Cut(p) can be retracted homeomorphically onto a ball around p and
Cut(p) is a deformation retract of M − {p}.

The following Proposition gives a rather nice characterization of the cut locus in terms
of minimizing geodesics and conjugate points:

Proposition 13.31 Let M be a complete Riemannian manifold. For every pair of points,
p, q ∈ M , the point q belongs to the cut locus of p iff one of the two (not mutually exclusive
from each other) properties hold:

(a) There exist two distinct minimizing geodesics from p to q.

(b) There is a minimizing geodesic, γ, from p to q and q is the first conjugate point to p
along γ.

A proof of Proposition 13.31 can be found in Do Carmo [50] (Chapter 13, Proposition
2.2) Kobayashi and Nomizu [90] (Chapter VIII, Theorem 7.1) or Klingenberg [88] (Chapter
2, Lemma 2.1.11).

Observe that Proposition 13.31 implies the following symmetry property of the cut locus:
q ∈ Cut(p) iff p ∈ Cut(q). Furthermore, if M is compact, we have

p =
�

q∈Cut(p)

Cut(q).

Proposition 13.31 admits the following sharpening:
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Proposition 13.32 Let M be a complete Riemannian manifold. For all p, q ∈ M , if
q ∈ Cut(p), then:

(a) If among the minimizing geodesics from p to q, there is one, say γ, such that q is not
conjugate to p along γ, then there is another minimizing geodesic ω �= γ from p to q.

(b) Suppose q ∈ Cut(p) realizes the distance from p to Cut(p) (i.e., d(p, q) = d(p,Cut(p))).
If there are no minimal geodesics from p to q such that q is conjugate to p along this
geodesic, then there are exactly two minimizing geodesics, γ1 and γ2, from p to q, with
γ�
2(1) = −γ�

1(1). Moreover, if d(p, q) = i(M) (the injectivity radius), then γ1 and γ2
together form a closed geodesic.

Except for the last statement, Proposition 13.32 is proved in Do Carmo [50] (Chapter 13,
Proposition 2.12). The last statement is from Klingenberg [88] (Chapter 2, Lemma 2.1.11).

We also have the following characterization of �Cut(p):

Proposition 13.33 Let M be a complete Riemannian manifold. For any p ∈ M , the set
of vectors, u ∈ �Cut(p), such that is some v ∈ �Cut(p) with v �= u and exp

p
(u) = exp

p
(v), is

dense in �Cut(p).

Proposition 13.33 is proved in Klingenberg [88] (Chapter 2, Theorem 2.1.14).

We conclude this section by stating a classical theorem of Klingenberg about the injec-
tivity radius of a manifold of bounded positive sectional curvature.

Theorem 13.34 (Klingenberg) Let M be a complete Riemannian manifold and assume that
there are some positive constants, Kmin, Kmax, such that the sectional curvature of K satisfies

0 < Kmin ≤ K ≤ Kmax.

Then, M is compact and either

(a) i(M) ≥ π/
√
Kmax, or

(b) There is a closed geodesic, γ, of minimal length among all closed geodesics in M and
such that

i(M) =
1

2
L(γ).

The proof of Theorem 13.34 is quite hard. A proof using Rauch’s comparison Theorem
can be found in Do Carmo [50] (Chapter 13, Proposition 2.13).
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Chapter 14

Discrete Curvatures and Geodesics on
Polyhedral Surfaces
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Chapter 15

The Laplace-Beltrami Operator,
Harmonic Forms, The Connection
Laplacian and Weitzenböck Formulae

15.1 The Gradient, Hessian and Hodge ∗ Operators on
Riemannian Manifolds

The Laplacian is a very important operator because it shows up in many of the equations
used in physics to describe natural phenomena such as heat diffusion or wave propagation.
Therefore, it is highly desirable to generalize the Laplacian to functions defined on a man-
ifold. Furthermore, in the late 1930’s George de Rham (inspired by Élie Cartan) realized
that it was fruitful to define a version of the Laplacian operating on differential forms, be-
cause of a fundamental and almost miraculous relationship between harmonics forms (those
in the kernel of the Laplacian) and the de Rham cohomology groups on a (compact, ori-
entable) smooth manifold. Indeed, as we will see in Section 15.3, for every cohomology
group, Hk

DR(M), every cohomology class, [ω] ∈ Hk

DR(M), is represented by a unique har-
monic k-form, ω. This connection between analysis and topology lies deep and has many
important consequences. For example, Poincaré duality follows as an “easy” consequence of
the Hodge Theorem.

Technically, the Laplacian can be defined on differential forms using the Hodge ∗ operator
(Section 22.16). On functions, there are alternate definitions of the Laplacian using only the
covariant derivative and obtained by generalizing the notions of gradient and divergence to
functions on manifolds.

Another version of the Laplacian can be defined in terms of the adjoint of the connection,
∇, on differential forms, viewed as a linear map from A∗(M) to HomC∞(M)(X(M),A∗(M)).
We obtain the connection Laplacian (also called Bochner Laplacian), ∇∗∇. Then, it is
natural to wonder how the Hodge Laplacian, ∆, differs from the connection Laplacian, ∇∗∇?
Remarkably, there is a formula known as Weitzenböck’s formula (or Bochner’s formula) of

439
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the form
∆ = ∇∗∇+ C(R∇),

where C(R∇) is a contraction of a version of the curvature tensor on differential forms (a
fairly complicated term). In the case of one-forms,

∆ = ∇∗∇+ Ric,

where Ric is a suitable version of the Ricci curvature operating on one-forms.

Weitzenböck-type formulae are at the root of the so-called “Bochner Technique”, which
consists in exploiting curvature information to deduce topological information. For example,
if the Ricci curvature on a compact, orientable Riemannian manifold is strictly positive, then
H1

DR(M) = (0), a theorem due to Bochner.

If (M, �−,−�) is a Riemannian manifold of dimension n, then for every p ∈ M , the inner
product, �−,−�p, on TpM yields a canonical isomorphism, � : TpM → T ∗

p
M , as explained

in Sections 22.1 and 11.5. Namely, for any u ∈ TpM , u� = �(u) is the linear form in T ∗
p
M

defined by
u�(v) = �u, v�p, v ∈ TpM.

Recall that the inverse of the map � is the map � : T ∗
p
M → TpM . As a consequence, for every

smooth function, f ∈ C∞(M), we get smooth vector field, grad f = (df)�, defined so that

(grad f)p = (dfp)
�,

that is, we have
�(grad f)p, u�p = dfp(u), for all u ∈ TpM.

The vector field, grad f , is the gradient of the function f .

Conversely, a vector field, X ∈ X(M), yields the one-form, X� ∈ A1(M), given by

(X�)p = (Xp)
�.

The Hessian, Hess(f), (or ∇2(f)) of a function, f ∈ C∞(M), is the (0, 2)-tensor defined
by

Hess(f)(X, Y ) = X(Y (f))− (∇XY )(f) = X(df(Y ))− df(∇XY ),

for all vector fields, X, Y ∈ X(M).

Recall from Proposition 11.5 that the covariant derivative, ∇Xθ, of any one-form,
θ ∈ A1(M), is the one-form given by

(∇Xθ)(Y ) = X(θ(Y ))− θ(∇XY )

Recall from Proposition 11.5 that the covariant derivative, ∇Xθ, of any one-form,
θ ∈ A1(M), is the one-form given by

(∇Xθ)(Y ) = X(θ(Y ))− θ(∇XY )
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so, the Hessian, Hess(f), is also defined by

Hess(f)(X, Y ) = (∇Xdf)(Y ).

Since ∇ is torsion-free, we get

Hess(f)(X, Y ) = X(Y (f))− (∇XY )(f) = Y (X(f))− (∇YX)(f) = Hess(f)(Y,X),

which means that the Hessian is a symmetric (0, 2)-tensor. We also have the equation

Hess(f)(X, Y ) = �∇X grad f, Y �.

Indeed,

X(Y (f)) = X(df(Y ))

= X(�grad f, Y �)
= �∇X grad f, Y �+ �grad f,∇XY �
= �∇X grad f, Y �+ (∇XY )(f)

which yields
�∇X grad f, Y � = X(Y (f))− (∇XY )(f) = Hess(f)(X, Y ).

A function, f ∈ C∞(M), is convex (resp. strictly convex ) iff its Hessian, Hess(f), is
positive semi-definite (resp. positive definite).

By the results of Section 22.16, the inner product, �−,−�p, on TpM induces an inner
product on

�
k T ∗

p
M . Therefore, for any two k-forms, ω, η ∈ Ak(M), we get the smooth

function, �ω, η�, given by
�ω, η�(p) = �ωp, ηp�p.

Furthermore, if M is oriented, then we can apply the results of Section 22.16 so the vector
bundle, T ∗M , is oriented (by giving T ∗

p
M the orientation induced by the orientation of TpM ,

for every p ∈ M) and for every p ∈ M , we get a Hodge ∗-operator,

∗ :
k�
T ∗
p
M →

n−k�
T ∗
p
M.

Then, given any k-form, ω ∈ Ak(M), we can define ∗ω by

(∗ω)p = ∗(ωp), p ∈ M.

We have to check that ∗ω is indeed a smooth form in An−k(M), but this is not hard to do
in local coordinates (for help, see Morita [114], Chapter 4, Section 1). Therefore, if M is a
Riemannian oriented manifold of dimension n, we have Hodge ∗-operators,

∗ : Ak(M) → An−k(M).
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Observe that ∗1 is just the volume form, VolM , induced by the metric. Indeed, we know
from Section 22.1 that in local coordinates, x1, . . . , xn, near p, the metric on T ∗

p
M is given

by the inverse, (gij), of the metric, (gij), on TpM and by the results of Section 22.16,

∗(1) =
1�

det(gij)
dx1 ∧ · · · ∧ dxn

=
�

det(gij) dx1 ∧ · · · ∧ dxn = VolM .

Proposition 22.25 yields the following:

Proposition 15.1 If M is a Riemannian oriented manifold of dimension n, then we have
the following properties:

(i) ∗(fω + gη) = f ∗ ω + g ∗ η, for all ω, η ∈ Ak(M) and all f, g ∈ C∞(M).

(ii) ∗∗ = (−id)k(n−k).

(iii) ω ∧ ∗η = η ∧ ∗ω = �ω, η�VolM , for all ω, η ∈ Ak(M).

(iv) ∗(ω ∧ ∗η) = ∗(η ∧ ∗ω) = �ω, η�, for all ω, η ∈ Ak(M).

(v) �∗ω, ∗η� = �ω, η�, for all ω, η ∈ Ak(M).

Recall that exterior differentiation, d, is a map, d : Ak(M) → Ak+1(M). Using the
Hodge ∗-operator, we can define an operator, δ : Ak(M) → Ak−1(M), that will turn out to
be adjoint to d with respect to an inner product on A•(M).

Definition 15.1 Let M be an oriented Riemannian manifold of dimension n. For any k,
with 1 ≤ k ≤ n, let

δ = (−1)n(k+1)+1 ∗ d ∗ .

Clearly, δ is a map, δ : Ak(M) → Ak−1(M), and δ = 0 on A0(M) = C∞(M). It is easy
to see that

∗δ = (−1)kd∗, δ∗ = (−1)k+1 ∗ d, δ ◦ δ = 0.

15.2 The Laplace-Beltrami and Divergence Operators
on Riemannian Manifolds

Using d and δ, we can generalize the Laplacian to an operator on differential forms.
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Definition 15.2 Let M be an oriented Riemannian manifold of dimension n. The Laplace-
Beltrami operator , for short, Laplacian, is the operator, ∆ : Ak(M) → Ak(M), defined by

∆ = dδ + δd.

A form, ω ∈ Ak(M), such that ∆ω = 0 is a harmonic form. In particular, a function,
f ∈ A0(M) = C∞(M), such that ∆f = 0 is called a harmonic function.

The Laplacian in Definition 15.2 is also called the Hodge Laplacian.

IfM = R
n with the Euclidean metric and f is a smooth function, a laborious computation

yields

∆f = −
n�

i=1

∂2f

∂x2
i

,

that is, the usual Laplacian with a negative sign in front (the computation can be found in
Morita [114], Example 4.12 or Jost [83], Chapter 2, Section 2.1). It is also easy to see that
∆ commutes with ∗, that is,

∆∗ = ∗∆.

Given any vector field, X ∈ X(M), its divergence, divX, is defined by

divX = δX�.

Now, for a function, f ∈ C∞(M), we have δf = 0, so ∆f = δdf . However,

div(grad f) = δ(grad f)� = δ((df)�)� = δdf,

so
∆f = div grad f,

as in the case of Rn.

Remark: Since the definition of δ involves two occurrences of the Hodge ∗-operator, δ
also makes sense on non-orientable manifolds by using a local definition. Therefore, the
Laplacian, ∆, also makes sense on non-orientable manifolds.

In the rest of this section, we assume that M is orientable.

The relationship between δ and d can be made clearer by introducing an inner product on
forms with compact support. Recall that Ak

c
(M) denotes the space of k-forms with compact

support (an infinite dimensional vector space). For any two k-forms with compact support,
ω, η ∈ Ak

c
(M), set

(ω, η) =

�

M

�ω, η�VolM =

�

M

�ω, η� ∗ (1).
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Using Proposition 15.1, we have

(ω, η) =

�

M

�ω, η�VolM =

�

M

ω ∧ ∗η =

�

M

η ∧ ∗ω,

so it is easy to check that (−,−) is indeed an inner product on k-forms with compact support.
We can extend this inner product to forms with compact support in A•

c
(M) =

�
n

k=0 Ak

c
(M)

by making Ah

c
(M) and Ak

c
(M) orthogonal if h �= k.

Proposition 15.2 If M is an orientable Riemannian manifold, then δ is (formally) adjoint
to d, that is,

(dω, η) = (ω, δη),

for all k-forms, ω, η, with compact support.

Proof . By linearity and orthogonality of the Ak

c
(M) the proof reduces to the case where

ω ∈ Ak−1
c

(M) and η ∈ Ak

c
(M) (both with compact support). By definition of δ and the fact

that
∗∗ = (−id)(k−1)(n−k+1)

for ∗ : Ak−1(M) → An−k+1(M), we have

∗δ = (−1)kd∗,

and since

d(ω ∧ ∗η) = dω ∧ ∗η + (−1)k−1ω ∧ d ∗ η
= dω ∧ ∗η − ω ∧ ∗δη

we get
�

M

d(ω ∧ ∗η) =

�

M

dω ∧ ∗η −
�

M

ω ∧ ∗δη

= (dω, η)− (ω, δη).

However, by Stokes Theorem (Theorem 9.7),
�

M

d(ω ∧ ∗η) = 0,

so (dω, η)− (ω, δη) = 0, that is, (dω, η) = (ω, δη), as claimed.

Corollary 15.3 If M is an orientable Riemannian manifold, then the Laplacian, ∆ is self-
adjoint that is,

(∆ω, η) = (ω,∆η),

for all k-forms, ω, η, with compact support.



15.2. THE LAPLACE-BELTRAMI AND DIVERGENCE OPERATORS 445

We also obtain the following useful fact:

Proposition 15.4 If M is an orientable Riemannian manifold, then for every k-form, ω,
with compact support, ∆ω = 0 iff dω = 0 and δω = 0.

Proof . Since ∆ = dδ+δd, is is obvious that if dω = 0 and δω = 0, then ∆ω = 0. Conversely,

(∆ω,ω) = ((dδ + δd)ω,ω) = (dδω,ω) + (δdω,ω) = (δω, δω) + (dω, dω).

Thus, if ∆ω = 0, then (δω, δω) = (dω, dω) = 0, which implies dω = 0 and δω = 0.

As a consequence of Proposition 15.4, if M is a connected, orientable, compact Rieman-
nian manifold, then every harmonic function on M is a constant.

For practical reasons, we need a formula for the Laplacian of a function, f ∈ C∞(M), in
local coordinates. If (U,ϕ) is a chart near p, as usual, let

∂f

∂xj

(p) =
∂(f ◦ ϕ−1)

∂uj

(ϕ(p)),

where (u1, . . . , un) are the coordinate functions in R
n. Write |g| = det(gij), where (gij) is

the symmetric, positive definite matrix giving the metric in the chart (U,ϕ).

Proposition 15.5 If M is an orientable Riemannian manifold, then for every local chart,
(U,ϕ), for every function, f ∈ C∞(M), we have

∆f = − 1�
|g|

�

i,j

∂

∂xi

��
|g| gij ∂f

∂xj

�
.

Proof . We follow Jost [83], Chapter 2, Section 1. Pick any function, h ∈ C∞(M), with
compact support. We have

�

M

(∆f)h ∗ (1) = (∆f, h)

= (δdf, h)

= (df, dh)

=

�

M

�df, dh� ∗ (1)

=

�

M

�

ij

gij
∂f

∂xi

∂h

∂xj

∗ (1)

= −
�

M

�

ij

1�
|g|

∂

∂xj

��
|g| gij ∂f

∂xi

�
h ∗ (1),

where we have used integration by parts in the last line. Since the above equation holds for
all h, we get our result.
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It turns out that in a Riemannian manifold, the divergence of a vector field and the
Laplacian of a function can be given a definition that uses the covariant derivative (see
Chapter 11, Section 11.1) instead of the Hodge ∗-operator. For the sake of completeness,
we present this alternate definition which is the one used in Gallot, Hulin and Lafontaine
[60] (Chapter 4) and O’Neill [119] (Chapter 3). If ∇ is the Levi-Civita connection induced
by the Riemannian metric, then the divergence of a vector field, X ∈ X(M), is the function,
divX : M → R, defined so that

(divX)(p) = tr(Y (p) �→ (−∇YX)p),

namely, for every p, (divX)(p) is the trace of the linear map, Y (p) �→ (−∇YX)p. Of course,
for any function, f ∈ C∞(M), we define ∆f by

∆f = div grad f.

Observe that the above definition of the divergence (and of the Laplacian) makes sense
even if M is non-orientable. For orientable manifolds, the equivalence of this new definition
of the divergence with our definition is proved in Petersen [121], see Chapter 3, Proposition
31. The main reason is that

LX VolM = −(divX)VolM

and by Cartan’s Formula (Proposition 8.15), LX = i(X) ◦ d+ d ◦ i(X), as dVolM = 0, we get

(divX)VolM = −d(i(X)VolM).

The above formulae also holds for a local volume form (i.e. for a volume form on a local
chart).

The operator, δ : A1(M) → A0(M), can also be defined in terms of the covariant deriva-
tive (see Gallot, Hulin and Lafontaine [60], Chapter 4). For any one-form, ω ∈ A1(M), recall
that

(∇Xω)(Y ) = X(ω(Y ))− ω(∇XY ).

Then, it turns out that
δω = −tr∇ω,

where the trace should be interpreted as the trace of the R-bilinear map, X, Y �→ (∇Xω)(Y ),
as in Chapter 22, see Proposition 22.2. This means that in any chart, (U,ϕ),

δω = −
n�

i=1

(∇Eiω)(Ei),

for any orthonormal frame field, (E1, . . . , En) over U . It can be shown that

δ(fdf) = f∆f − �grad f, grad f�,
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and, as a consequence,

(∆f, f) =

�

M

�grad f, grad f�VolM ,

for any orientable, compact manifold, M .

Since the proof of the next proposition is quite technical, we omit the proof.

Proposition 15.6 If M is an orientable and compact Riemannian manifold, then for every
vector field, X ∈ X(M), we have

divX = δX�.

Consequently, for the Laplacian, we have

∆f = δdf = div grad f.

Remark: Some authors omit the negative sign in the definition of the divergence, that is,
they define

(divX)(p) = tr(Y (p) �→ (∇YX)p).

Here is a frequently used corollary of Proposition 15.6:

Proposition 15.7 (Green’s Formula) If M is an orientable and compact Riemannian man-
ifold without boundary, then for every vector field, X ∈ X(M), we have

�

M

(divX) VolM = 0.

Proofs of proposition 15.7 can be found in Gallot, Hulin and Lafontaine [60] (Chapter 4,
Proposition 4.9) and Helgason [72] (Chapter 2, Section 2.4).

There is a generalization of the formula expressing δω over an orthonormal frame, E1, . . .,
En, for a one-form, ω, that applies to any differential form. In fact, there are formulae
expressing both d and δ over an orthornormal frame and its coframe and these are of-
ten handy in proofs. Recall that for every vector field, X ∈ X(M), the interior product,
i(X) : Ak+1(M) → Ak(M), is defined by

(i(X)ω)(Y1, . . . , Yk) = ω(X, Y1, . . . , Yk),

for all Y1, . . . , Yk ∈ X(M).

Proposition 15.8 Let M be a compact, orientable, Riemannian manifold. For every p ∈
M , for every local chart, (U,ϕ), with p ∈ M , if (E1, . . . , En) is an orthonormal frame over
U and (θ1, . . . , θn) is its dual coframe, then for every k-form, ω ∈ Ak(M), we have:

dω =
n�

i=1

θi ∧∇Eiω

δω = −
n�

i=1

i(Ei)∇Eiω.
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A proof of Proposition 15.8 can be found in Petersen [121] (Chapter 7, proposition 37)
or Jost [83] (Chapter 3, Lemma 3.3.4). When ω is a one-form, δωp is just a number and
indeed,

δω = −
n�

i=1

i(Ei)∇Eiω = −
n�

i=1

(∇Eiω)(Ei),

as stated earlier.

15.3 Harmonic Forms, the Hodge Theorem, Poincaré
Duality

Let us now assume that M is orientable and compact.

Definition 15.3 Let M be an orientable and compact Riemannian manifold of dimension
n. For every k, with 0 ≤ k ≤ n, let

H
k(M) = {ω ∈ Ak(M) | ∆ω = 0},

the space of harmonic k-forms .

The following proposition is left as an easy exercise:

Proposition 15.9 Let M be an orientable and compact Riemannian manifold of dimension
n. The Laplacian commutes with the Hodge ∗-operator and we have a linear map,

∗ : Hk(M) → H
n−k(M).

One of the deepest and most important theorems about manifolds is the Hodge decom-
position theorem which we now state.

Theorem 15.10 (Hodge Decomposition Theorem) Let M be an orientable and compact Rie-
mannian manifold of dimension n. For every k, with 0 ≤ k ≤ n, the space, Hk(M), is finite
dimensional and we have the following orthogonal direct sum decomposition of the space of
k-forms:

Ak(M) = H
k(M)⊕ d(Ak−1(M))⊕ δ(Ak+1(M)).

The proof of Theorem 15.10 involves a lot of analysis and it is long and complicated. A
complete proof can be found in Warner [147], Chapter 6. Other treatments of Hodge theory
can be found in Morita [114] (Chapter 4) and Jost [83] (Chapter 2).

The Hodge Decomposition Theorem has a number of important corollaries, one of which
is Hodge Theorem:
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Theorem 15.11 (Hodge Theorem) Let M be an orientable and compact Riemannian man-
ifold of dimension n. For every k, with 0 ≤ k ≤ n, there is an isomorphism between H

k(M)
and the de Rham cohomology vector space, Hk

DR(M):

Hk

DR(M) ∼= H
k(M).

Proof . Since by Proposition 15.4, every harmonic form, ω ∈ H
k(M), is closed, we get a

linear map from H
k(M) to Hk

DR(M) by assigning its cohomology class, [ω], to ω. This map
is injective. Indeed if [ω] = 0 for some ω ∈ H

k(M), then ω = dη, for some η ∈ Ak−1(M) so

(ω,ω) = (dη,ω) = (η, δω).

But, as ω ∈ H
k(M) we have δω = 0 by Proposition 15.4, so (ω,ω) = 0, that is, ω = 0.

Our map is also surjective, this is the hard part of Hodge Theorem. By the Hodge
Decomposition Theorem, for every closed form, ω ∈ Ak(M), we can write

ω = ωH + dη + δθ,

with ωH ∈ H
k(M), η ∈ Ak−1(M) and θ ∈ Ak+1(M). Since ω is closed and ωH ∈ H

k(M), we
have dω = 0 and dωH = 0, thus

dδθ = 0

and so
0 = (dδθ, θ) = (δθ, δθ),

that is, δθ = 0. Therefore, ω = ωH + dη, which implies [ω] = [ωH ], with ωH ∈ H
k(M),

proving the surjectivity of our map.

The Hodge Theorem also implies the Poincaré Duality Theorem. If M is a compact,
orientable, n-dimensional smooth manifold, for each k, with 0 ≤ k ≤ n, we define a bilinear
map,

((−,−)) : Hk

DR(M)×Hn−k

DR (M) −→ R,

by setting

(([ω], [η])) =

�

M

ω ∧ η.

We need to check that this definition does not depend on the choice of closed forms in the
cohomology classes [ω] and [η]. However, as dω = dη = 0, we have

d(α ∧ η + (−1)kω ∧ β + α ∧ dβ) = dα ∧ η + ω ∧ dβ + dα ∧ dβ,

so by Stokes’ Theorem,
�

M

(ω + dα) ∧ (η + dβ) =

�

M

ω ∧ η +

�

M

d(α ∧ η + (−1)kω ∧ β + α ∧ dβ)

=

�

M

ω ∧ η.
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Theorem 15.12 (Poincaré Duality) If M is a compact, orientable, smooth manifold of
dimension n, then the bilinear map

((−,−)) : Hk

DR(M)×Hn−k

DR (M) −→ R

defined above is a nondegenerate pairing and hence, yields an isomorphism

Hk

DR(M) ∼= (Hn−k

DR (M))∗.

Proof . Pick any Riemannian metric on M . It is enough to show that for every nonzero
cohomology class, [ω] ∈ Hk

DR(M), there is some [η] ∈ Hn−k

DR (M) such that

(([ω], [η])) =

�

M

ω ∧ η �= 0.

By Hodge Theorem, we may assume that ω is a nonzero harmonic form. By Proposition
15.9, η = ∗ω is also harmonic and η ∈ H

n−k(M). Then, we get

(ω,ω) =

�

M

ω ∧ ∗ω = (([ω], [η]))

and indeed, (([ω], [η])) �= 0, since ω �= 0.

15.4 The Connection Laplacian, Weitzenböck Formula
and the Bochner Technique

If M is compact, orientable, Riemannian manifold, then the inner product, �−,−�p, on TpM
(with p ∈ M) induces an inner product on differential forms, as we explained in Section 15.2.
We also get an inner product on vector fields if, for any two vector field, X, Y ∈ X(M), we
define (X, Y ) by

(X, Y ) =

�

M

�X, Y �VolM ,

where �X, Y � is the function defined pointwise by

�X, Y �(p) = �X(p), Y (p)�p.

Using Proposition 11.5, we can define the covariant derivative, ∇Xω, of any k-form,
ω ∈ Ak(M), as the k-form given by

(∇Xω)(Y1, . . . , Yk) = X(ω(Y1, . . . , Yk))−
k�

j=1

ω(Y1, . . . ,∇XYj, . . . , Yk).

We can view ∇ as linear map,

∇ : Ak(M) → HomC∞(M)(X(M),Ak(M)),
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where ∇ω is the C∞(M)-linear map, X �→ ∇Xω. The inner product on Ak(M) allows us to
define the (formal) adjoint, ∇∗, of ∇, as a linear map

∇∗ : HomC∞(M)(X(M),Ak(M)) → Ak(M).

For any linear map, A ∈ HomC∞(M)(X(M),Ak(M)), let A∗ be the adjoint of A defined by

(AX, θ) = (X,A∗θ),

for all vector fields X ∈ X(M) and all k-forms, θ ∈ Ak(M). It can be verified that A∗ ∈
HomC∞(M)(Ak(M),X(M)). Then, given A,B ∈ HomC∞(M)(X(M),Ak(M)), the expression
tr(A∗B) is a smooth function on M and it can be verified that

�A,B� = tr(A∗B)

defines a non-degenerate pairing on HomC∞(M)(X(M),Ak(M)). Using this pairing we obtain
the (R-valued) inner product on HomC∞(M)(X(M),Ak(M)) given by

(A,B) =

�

M

tr(A∗B) VolM .

Using all this, the (formal) adjoint, ∇∗, of ∇ : Ak(M) → HomC∞(M)(X(M),Ak(M)) is the
linear map, ∇∗ : HomC∞(M)(X(M),Ak(M)) → Ak(M), defined implicitly by

(∇∗A,ω) = (A,∇ω),

that is, �

M

�∇∗A,ω�VolM =

�

M

�A,∇ω�VolM ,

for all A ∈ HomC∞(M)(X(M),Ak(M)) and all ω ∈ Ak(M).

� The notation ∇∗ for the adjoint of ∇ should not be confused with the dual connection
on T ∗M of a connection, ∇, on TM ! Here, ∇ denotes the connection on A∗(M) induced

by the orginal connection, ∇, on TM . The argument type (differential form or vector field)
should make it clear which ∇ is intended but it might have been better to use a notation
such as ∇� instead of ∇∗.

What we just did also applies to A∗(M) =
�

n

k=0 Ak(M) (where dim(M) = n) and so we
can view the connection, ∇, as a linear map, ∇ : A∗(M) → HomC∞(M)(X(M),A∗(M)) and
its adjoint as a linear map, ∇∗ : HomC∞(M)(X(M),A∗(M)) → A∗(M).

Definition 15.4 Given a compact, orientable, Riemannian manifold, M , the connection
Laplacian (or Bochner Laplacian), ∇∗∇, is defined as the composition of the connection,
∇ : A∗(M) → HomC∞(M)(X(M),A∗(M)), with its adjoint,
∇∗ : HomC∞(M)(X(M),A∗(M)) → A∗(M), as defined above.
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Observe that

(∇∗∇ω,ω) = (∇ω,∇ω) =

�

M

�∇ω,∇ω�VolM ,

for all ω ∈ Ak(M). Consequently, the “harmonic forms”, ω, with respect to ∇∗∇ must
satisfy

∇ω = 0,

but this condition is not equivalent to the harmonicity of ω with respect to the Hodge
Laplacian. Thus, in general, ∇∗∇ and ∆ are different operators. The relationship between
the two is given by formulae involving contractions of the curvature tensor and known as
Weitzenböck formulae. We will state such a formula in case of one-forms later on. But first,
we can give another definition of the connection Laplacian using second covariant derivatives
of forms. Given any k-form, ω ∈ Ak(M), for any two vector fields, X, Y ∈ X(M), we define
∇2

X,Y
ω by

∇2
X,Y

ω = ∇X(∇Y ω)−∇∇XY ω.

Given any local chart, (U,ϕ), and given any orthormal frame, (E1, . . . , En), over U , we can
take the trace, tr(∇2ω), of ∇2

X,Y
ω, defined by

tr(∇2ω) =
n�

i=1

∇2
Ei,Ei

ω.

It is easily seen that tr(∇2ω) does not depend on the choice of local chart and orthonormal
frame.

Proposition 15.13 If is M a compact, orientable, Riemannian manifold, then the connec-
tion Laplacian, ∇∗∇, is given by

∇∗∇ω = −tr(∇2ω),

for all differential forms, ω ∈ A∗(M).

The proof of Proposition 15.13, which is quite technical, can be found in Petersen [121]
(Chapter 7, Proposition 34).

We are now ready to prove the Weitzenböck formulae for one-forms.

Theorem 15.14 (Weitzenböck–Bochner Formula) If is M a compact, orientable, Rieman-
nian manifold, then for every one-form, ω ∈ A1(M), we have

∆ω = ∇∗∇ω + Ric(ω),

where Ric(ω) is the one-form given by

Ric(ω)(X) = ω(Ric�(X)),

where Ric� is the Ricci curvature viewed as a (1, 1)-tensor (that is, �Ric�(u), v�p = Ric(u, v),
for all u, v ∈ TpM and all p ∈ M).
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Proof . For any p ∈ M , pick any normal local chart, (U,ϕ), with p ∈ U , and pick any
orthonormal frame, (E1, . . . , En), over U . Because (U,ϕ) is a normal chart, at p, we have
(∇EjEj)p = 0 for all i, j. Recall from the discussion at the end of Section 15.2 that for every
one-form, ω, we have

δω = −
�

i

∇Eiω(Ei),

and so
dδω = −

�

i

∇X∇Eiω(Ei).

Also recall that
dω(X, Y ) = ∇Xω(Y )−∇Y ω(X),

and using Proposition 15.8 we can show that

δdω(X) = −
�

i

∇Ei∇Eiω(X) +
�

i

∇Ei∇Xω(Ei).

Thus, we get

∆ω(X) = −
�

i

∇Ei∇Eiω(X) +
�

i

(∇Ei∇X −∇X∇Ei)ω(Ei)

= −
�

i

∇2
Ei,Ei

ω(X) +
�

i

(∇2
Ei,X

−∇2
X,Ei

)ω(Ei)

= ∇∗∇ω(X) +
�

i

ω(R(Ei, X)Ei)

= ∇∗∇ω(X) + ω(Ric�(X)),

using the fact that (∇EjEj)p = 0 for all i, j and using Proposition 13.2 and Proposition
15.13.

For simplicity of notation, we will write Ric(u) for Ric�(u). There should be no confusion
since Ric(u, v) denotes the Ricci curvature, a (0, 2)-tensor. There is another way to express
Ric(ω) which will be useful in the proof of the next theorem. Observe that

Ric(ω)(Z) = ω(Ric(Z))

= �ω�,Ric(Z)�
= �Ric(Z),ω��
= Ric(Z,ω�)

= Ric(ω�, Z)

= �Ric(ω�), Z�
= (Ric(ω�))�(Z),

and thus,
Ric(ω)(Z) = (Ric(ω�))�(Z).
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Consequently the Weitzenböck formula can be written as

∆ω = ∇∗∇ω + (Ric(ω�))�.

The Weitzenböck–Bochner Formula implies the following theorem due to Bochner:

Theorem 15.15 (Bochner) If M is a compact, orientable, connected Riemannian manifold,
then the following properties hold:

(i) If the Ricci curvature is non-negative, that is Ric(u, u) ≥ 0 for all p ∈ M and all
u ∈ TpM and if Ric(u, u) > 0 for some p ∈ M and all u ∈ TpM , then H1

DRM = (0).

(ii) If the Ricci curvature is non-negative, then ∇ω = 0 for all ω ∈ A1(M) and
dimH1

DRM ≤ dimM .

Proof . (i) Assume H1
DRM �= (0). Then, by the Hodge Theorem, there is some nonzero

harmonic one-form, ω. The Weitzenböck–Bochner Formula implies that

(∆ω,ω) = (∇∗∇ω,ω) + ((Ric(ω�))�,ω).

Since ∆ω = 0, we get

0 = (∇∗∇ω,ω) + ((Ric(ω�))�,ω)

= (∇ω,∇ω) +

�

M

�(Ric(ω�))�,ω�VolM

= (∇ω,∇ω) +

�

M

�Ric(ω�),ω��VolM

= (∇ω,∇ω) +

�

M

Ric(ω�,ω�) VolM .

However, (∇ω,∇ω) ≥ 0 and by the assumption on the Ricci curvature, the integrand is
nonnegative and strictly positive at some point, so the integral is strictly positive, a contra-
diction.

(ii) Again, for any one-form, ω, we have

(∆ω,ω) = (∇ω,∇ω) +

�

M

Ric(ω�,ω�) VolM ,

and so, if the Ricci curvature is non-negative, ∆ω = 0 iff ∇ω = 0. This means that ω is
invariant by parallel transport (see Section 11.3) and thus, ω is completely determined by
its value, ωp, at some point, p ∈ M , so there is an injection, H1(M) −→ T ∗

p
M , which implies

that dimH1
DRM = dimH

1(M) ≤ dimM .

There is a version of the Weitzenböck formula for p-forms but it involves a more com-
plicated curvature term and its proof is also more complicated. The Bochner technique can
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also be generalized in various ways, in particular, to spin manifolds , but these considerations
are beyond the scope of these notes. Let me just say that Weitzenböck formulae involving
the Dirac operator play an important role in physics and 4-manifold geometry. We refer the
interested reader to Gallot, Hulin and Lafontaine [60] (Chapter 4) Petersen [121] (Chapter
7), Jost [83] (Chaper 3) and Berger [16] (Section 15.6) for more details on Weitzenböck
formulae and the Bochner technique.
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Chapter 16

Spherical Harmonics and Linear
Representations of Lie Groups

16.1 Introduction, Spherical Harmonics on the Circle

In this chapter, we discuss spherical harmonics and take a glimpse at the linear representa-
tion of Lie groups. Spherical harmonics on the sphere, S2, have interesting applications in
computer graphics and computer vision so this material is not only important for theoretical
reasons but also for practical reasons.

Joseph Fourier (1768-1830) invented Fourier series in order to solve the heat equation
[55]. Using Fourier series, every square-integrable periodic function, f , (of period 2π) can
be expressed uniquely as the sum of a power series of the form

f(θ) = a0 +
∞�

k=1

(ak cos kθ + bk cos kθ),

where the Fourier coefficients , ak, bk, of f are given by the formulae

a0 =
1

2π

�
π

−π

f(θ) dθ, ak =
1

π

�
π

−π

f(θ) cos kθ dθ, bk =
1

π

�
π

−π

f(θ) sin kθ dθ,

for k ≥ 1. The reader will find the above formulae in Fourier’s famous book [55] in Chapter
III, Section 233, page 256, essentially using the notation that we use nowdays.

This remarkable discovery has many theoretical and practical applications in physics,
signal processing, engineering, etc. We can describe Fourier series in a more conceptual
manner if we introduce the following inner product on square-integrable functions:

�f, g� =
�

π

−π

f(θ)g(θ) dθ,

457
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which we will also denote by

�f, g� =
�

S1

f(θ)g(θ) dθ,

where S1 denotes the unit circle. After all, periodic functions of (period 2π) can be viewed
as functions on the circle. With this inner product, the space L2(S1) is a complete normed
vector space, that is, a Hilbert space. Furthermore, if we define the subspaces, Hk(S1),
of L2(S1), so that H0(S1) (= R) is the set of constant functions and Hk(S1) is the two-
dimensional space spanned by the functions cos kθ and sin kθ, then it turns out that we have
a Hilbert sum decomposition

L2(S1) =
∞�

k=0

Hk(S
1)

into pairwise orthogonal subspaces, where
�∞

k=0 Hk(S1) is dense in L2(S1). The functions
cos kθ and sin kθ are also orthogonal in Hk(S1).

Now, it turns out that the spaces, Hk(S1), arise naturally when we look for homoge-
neous solutions of the Laplace equation, ∆f = 0, in R

2 (Pierre-Simon Laplace, 1749-1827).
Roughly speaking, a homogeneous function in R

2 is a function that can be expressed in polar
coordinates, (r, θ), as

f(r, θ) = rkg(θ).

Recall that the Laplacian on R
2 expressed in cartesian coordinates, (x, y), is given by

∆f =
∂2f

∂x2
+

∂2f

∂y2
,

where f : R2 → R is a function which is at least of class C2. In polar coordinates, (r, θ),
where (x, y) = (r cos θ, r sin θ) and r > 0, the Laplacian is given by

∆f =
1

r

∂

∂r

�
r
∂f

∂r

�
+

1

r2
∂2f

∂θ2
.

If we restrict f to the unit circle, S1, then the Laplacian on S1 is given by

∆s1f =
∂2f

∂θ2
.

It turns out that the space Hk(S1) is the eigenspace of ∆S1 for the eigenvalue −k2.

To show this, we consider another question, namely, what are the harmonic functions on
R

2, that is, the functions, f , that are solutions of the Laplace equation,

∆f = 0.

Our ancestors had the idea that the above equation can be solved by separation of variables .
This means that we write f(r, θ) = F (r)g(θ) , where F (r) and g(θ) are independent functions.
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To make things easier, let us assume that F (r) = rk, for some integer k ≥ 0, which means that
we assume that f is a homogeneous function of degree k. Recall that a function, f : R2 → R,
is homogeneous of degree k iff

f(tx, ty) = tkf(x, y) for all t > 0.

Now, using the Laplacian in polar coordinates, we get

∆f =
1

r

∂

∂r

�
r
∂(rkg(θ))

∂r

�
+

1

r2
∂2(rkg(θ))

∂θ2

=
1

r

∂

∂r

�
krkg

�
+ rk−2∂

2g

∂θ2

= rk−2k2g + rk−2∂
2g

∂θ2

= rk−2(k2g +∆S1g).

Thus, we deduce that
∆f = 0 iff ∆S1g = −k2g,

that is, g is an eigenfunction of ∆S1 for the eigenvalue −k2. But, the above equation is
equivalent to the second-order differential equation

d2g

dθ2
+ k2g = 0,

whose general solution is given by

g(θ) = an cos kθ + bn sin kθ.

In summary, we found that the integers, 0,−1,−4,−9, . . . ,−k2, . . . are eigenvalues of ∆S1

and that the functions cos kθ and sin kθ are eigenfunctions for the eigenvalue −k2, with
k ≥ 0. So, it looks like the dimension of the eigenspace corresponding to the eigenvalue −k2

is 1 when k = 0 and 2 when k ≥ 1.

It can indeed be shown that∆S1 has no other eigenvalues and that the dimensions claimed
for the eigenspaces are correct. Observe that if we go back to our homogeneous harmonic
functions, f(r, θ) = rkg(θ), we see that this space is spanned by the functions

uk = rk cos kθ, vk = rk sin kθ.

Now, (x+ iy)k = rk(cos kθ+ i sin kθ), and since �(x+ iy)k and �(x+ iy)k are homogeneous
polynomials, we see that uk and vk are homogeneous polynomials called harmonic polyno-
mials . For example, here is a list of a basis for the harmonic polynomials (in two variables)
of degree k = 0, 1, 2, 3, 4:

k = 0 1

k = 1 x, y

k = 2 x2 − y2, xy

k = 3 x3 − 3xy2, 3x2y − y3

k = 4 x4 − 6x2y2 + y4, x3y − xy3.
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Therefore, the eigenfunctions of the Laplacian on S1 are the restrictions of the harmonic
polynomials on R

2 to S1 and we have a Hilbert sum decomposition, L2(S1) =
�∞

k=0 Hk(S1).
It turns out that this phenomenon generalizes to the sphere Sn ⊆ R

n+1 for all n ≥ 1.

Let us take a look at next case, n = 2.

16.2 Spherical Harmonics on the 2-Sphere

The material of section is very classical and can be found in many places, for example An-
drews, Askey and Roy [2] (Chapter 9), Sansone [132] (Chapter III), Hochstadt [78] (Chapter
6) and Lebedev [97] (Chapter ). We recommend the exposition in Lebedev [97] because we
find it particularly clear and uncluttered. We have also borrowed heavily from some lecture
notes by Hermann Gluck for a course he offered in 1997-1998.

Our goal is to find the homogeneous solutions of the Laplace equation, ∆f = 0, in R
3,

and to show that they correspond to spaces, Hk(S2), of eigenfunctions of the Laplacian, ∆S2 ,
on the 2-sphere,

S2 = {(x, y, z) ∈ R
3 | x2 + y2 + z2 = 1}.

Then, the spaces Hk(S2) will give us a Hilbert sum decomposition of the Hilbert space,
L2(S2), of square-integrable functions on S2. This is the generalization of Fourier series to
the 2-sphere and the functions in the spaces Hk(S2) are called spherical harmonics .

The Laplacian in R
3 is of course given by

∆f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
.

If we use spherical coordinates

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ,

in R
3, where 0 ≤ θ < π, 0 ≤ ϕ < 2π and r > 0 (recall that ϕ is the so-called azimuthal angle

in the xy-plane originating at the x-axis and θ is the so-called polar angle from the z-axis,
angle defined in the plane obtained by rotating the xz-plane around the z-axis by the angle
ϕ), then the Laplacian in spherical coordinates is given by

∆f =
1

r2
∂

∂r

�
r2
∂f

∂r

�
+

1

r2
∆S2f,

where

∆S2f =
1

sin θ

∂

∂θ

�
sin θ

∂f

∂θ

�
+

1

sin2 θ

∂2f

∂ϕ2
,
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is the Laplacian on the sphere, S2 (for example, see Lebedev [97], Chapter 8 or Section 16.3,
where we derive this formula). Let us look for homogeneous harmonic functions,
f(r, θ,ϕ) = rkg(θ,ϕ), on R

3, that is, solutions of the Laplace equation

∆f = 0.

We get

∆f =
1

r2
∂

∂r

�
r2
∂(rkg)

∂r

�
+

1

r2
∆S2(rkg)

=
1

r2
∂

∂r

�
krk+1g

�
+ rk−2∆S2g

= rk−2k(k + 1)g + rk−2∆S2g

= rk−2(k(k + 1)g +∆S2g).

Therefore,
∆f = 0 iff ∆S2g = −k(k + 1)g,

that is, g is an eigenfunction of ∆S2 for the eigenvalue −k(k + 1).

We can look for solutions of the above equation using the separation of variables method.
If we let g(θ,ϕ) = Θ(θ)Φ(ϕ), then we get the equation

Φ

sin θ

∂

∂θ

�
sin θ

∂Θ

∂θ

�
+

Θ

sin2 θ

∂2Φ

∂ϕ2
= −k(k + 1)ΘΦ,

that is, dividing by ΘΦ and multiplying by sin2 θ,

sin θ

Θ

∂

∂θ

�
sin θ

∂Θ

∂θ

�
+ k(k + 1) sin2 θ = − 1

Φ

∂2Φ

∂ϕ2
.

Since Θ and Φ are independent functions, the above is possible only if both sides are equal
to a constant, say µ. This leads to two equations

∂2Φ

∂ϕ2
+ µΦ = 0

sin θ

Θ

∂

∂θ

�
sin θ

∂Θ

∂θ

�
+ k(k + 1) sin2 θ − µ = 0.

However, we want Φ to be a periodic in ϕ since we are considering functions on the sphere,
so µ be must of the form µ = m2, for some non-negative integer, m. Then, we know that
the space of solutions of the equation

∂2Φ

∂ϕ2
+m2Φ = 0
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is two-dimensional and is spanned by the two functions

Φ(ϕ) = cosmϕ, Φ(ϕ) = sinmϕ.

We still have to solve the equation

sin θ
∂

∂θ

�
sin θ

∂Θ

∂θ

�
+ (k(k + 1) sin2 θ −m2)Θ = 0,

which is equivalent to

sin2 θΘ�� + sin θ cos θΘ� + (k(k + 1) sin2 θ −m2)Θ = 0.

a variant of Legendre’s equation. For this, we use the change of variable, t = cos θ, and we
consider the function, u, given by u(cos θ) = Θ(θ) (recall that 0 ≤ θ < π), so we get the
second-order differential equation

(1− t2)u�� − 2tu� +

�
k(k + 1)− m2

1− t2

�
u = 0

sometimes called the general Legendre equation (Adrien-Marie Legendre, 1752-1833). The
trick to solve this equation is to make the substitution

u(t) = (1− t2)
m
2 v(t),

see Lebedev [97], Chapter 7, Section 7.12. Then, we get

(1− t2)v�� − 2(m+ 1)tv� + (k(k + 1)−m(m+ 1))v = 0.

When m = 0, we get the Legendre equation:

(1− t2)v�� − 2tv� + k(k + 1)v = 0,

see Lebedev [97], Chapter 7, Section 7.3. This equation has two fundamental solution, Pk(t)
and Qk(t), called the Legendre functions of the first and second kinds . The Pk(t) are actually
polynomials and the Qk(t) are given by power series that diverge for t = 1, so we only keep
the Legendre polynomials , Pk(t). The Legendre polynomials can be defined in various ways.
One definition is in terms of Rodrigues’ formula:

Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n,

see Lebedev [97], Chapter 4, Section 4.2. In this version of the Legendre polynomials they
are normalized so that Pn(1) = 1. There is also the following recurrence relation:

P0 = 1

P1 = t

(n+ 1)Pn+1 = (2n+ 1)tPn − nPn−1 n ≥ 1,
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see Lebedev [97], Chapter 4, Section 4.3. For example, the first six Legendre polynomials
are:

1

t

1

2
(3t2 − 1)

1

2
(5t3 − 3t)

1

8
(35t4 − 30t2 + 3)

1

8
(63t5 − 70t3 + 15t).

Let us now return to our differential equation

(1− t2)v�� − 2(m+ 1)tv� + (k(k + 1)−m(m+ 1))v = 0. (∗)

Observe that if we differentiate with respect to t, we get the equation

(1− t2)v��� − 2(m+ 2)tv�� + (k(k + 1)− (m+ 1)(m+ 2))v� = 0.

This shows that if v is a solution of our equation (∗) for given k and m, then v� is a solution
of the same equation for k and m+ 1. Thus, if Pk(t) solves (∗) for given k and m = 0, then
P �
k
(t) solves (∗) for the same k and m = 1, P ��

k
(t) solves (∗) for the same k and m = 2, and

in general, dm/dtm(Pk(t)) solves (∗) for k and m. Therefore, our original equation,

(1− t2)u�� − 2tu� +

�
k(k + 1)− m2

1− t2

�
u = 0 (†)

has the solution

u(t) = (1− t2)
m
2
dm

dtm
(Pk(t)).

The function u(t) is traditionally denoted Pm

k
(t) and called an associated Legendre function,

see Lebedev [97], Chapter 7, Section 7.12. The index k is often called the band index .
Obviously, Pm

k
(t) ≡ 0 if m > k and P 0

k
(t) = Pk(t), the Legendre polynomial of degree k.

An associated Legendre function is not a polynomial in general and because of the factor
(1− t2)

m
2 it is only defined on the closed interval [−1, 1].

� Certain authors add the factor (−1)m in front of the expression for the associated Leg-
endre function Pm

k
(t), as in Lebedev [97], Chapter 7, Section 7.12, see also footnote 29

on page 193. This seems to be common practice in the quantum mechanics literature where
it is called the Condon Shortley phase factor .
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The associated Legendre functions satisfy various recurrence relations that allows us to
compute them. For example, for fixed m ≥ 0, we have (see Lebedev [97], Chapter 7, Section
7.12) the recurrence

(k −m+ 1)Pm

k+1(t) = (2k + 1)tPm

k
(t)− (k +m)Pm

k−1(t), k ≥ 1

and for fixed k ≥ 2 we have

Pm+2
k

(t) =
2(m+ 1)t

(t2 − 1)
1
2

Pm+1
k

(t) + (k −m)(k +m+ 1)Pm

k
(t), 0 ≤ m ≤ k − 2

which can also be used to compute Pm

k
starting from

P 0
k
(t) = Pk(t)

P 1
k
(t) =

kt

(t2 − 1)
1
2

Pk(t)−
k

(t2 − 1)
1
2

Pk−1(t).

Observe that the recurrence relation for m fixed yields the following equation for k = m
(as Pm

m−1 = 0):
Pm

m+1(t) = (2m+ 1)tPm

m
(t).

It it also easy to see that

Pm

m
(t) =

(2m)!

2mm!
(1− t2)

m
2 .

Observe that
(2m)!

2mm!
= (2m− 1)(2m− 3) · · · 5 · 3 · 1,

an expression that is sometimes denoted (2m− 1)!! and called the double factorial .

� Beware that some papers in computer graphics adopt the definition of associated Legen-
dre functions with the scale factor (−1)m added so this factor is present in these papers,

for example, Green [64].

The equation above allows us to “lift” Pm

m
to the higher band m + 1. The computer

graphics community (see Green [64]) uses the following three rules to compute Pm

k
(t) where

0 ≤ m ≤ k:

(1) Compute

Pm

m
(t) =

(2m)!

2mm!
(1− t2)

m
2 .

If m = k, stop. Otherwise do step 2 once:

(2) Compute Pm

m+1(t) = (2m+ 1)tPm

m
(t). If k = m+ 1, stop. Otherwise, iterate step 3:
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(3) Starting from i = m+ 1, compute

(i−m+ 1)Pm

i+1(t) = (2i+ 1)tPm

i
(t)− (i+m)Pm

i−1(t)

until i+ 1 = k.

If we recall that equation (†) was obtained from the equation

sin2 θΘ�� + sin θ cos θΘ� + (k(k + 1) sin2 θ −m2)Θ = 0

using the substitution u(cos θ) = Θ(θ), we see that

Θ(θ) = Pm

k
(cos θ)

is a solution of the above equation. Putting everything together, as f(r, θ,ϕ) = rkΘ(θ)Φ(ϕ),
we proved that the homogeneous functions,

f(r, θ,ϕ) = rk cosmϕPm

k
(cos θ), f(r, θ,ϕ) = rk sinmϕPm

k
(cos θ),

are solutions of the Laplacian, ∆, in R
3, and that the functions

cosmϕPm

k
(cos θ), sinmϕPm

k
(cos θ),

are eigenfunctions of the Laplacian, ∆S2 , on the sphere for the eigenvalue −k(k + 1). For k
fixed, as 0 ≤ m ≤ k, we get 2k + 1 linearly independent functions.

The notation for the above functions varies quite a bit essentially because of the choice
of normalization factors used in various fields (such as physics, seismology, geodesy, spectral
analysis, magnetics, quantum mechanics etc.). We will adopt the notation ym

l
, where l is a

nonnegative integer but m is allowed to be negative, with −l ≤ m ≤ l. Thus, we set

ym
l
(θ,ϕ) =






N0
l
Pl(cos θ) if m = 0√
2Nm

l
cosmϕPm

l
(cos θ) if m > 0√

2Nm

l
sin(−mϕ)P−m

l
(cos θ) if m < 0

for l = 0, 1, 2, . . ., and where the Nm

l
are scaling factors. In physics and computer graphics,

Nm

l
is chosen to be

Nm

l
=

�
(2l + 1)(l − |m|)!

4π(l + |m|)! .

The functions ym
l
are called the real spherical harmonics of degree l and order m. The index

l is called the band index .

The functions, ym
l
, have some very nice properties but to explain these we need to recall

the Hilbert space structure of the space, L2(S2), of square-integrable functions on the sphere.
Recall that we have an inner product on L2(S2) given by

�f, g� =
�

S2

fgΩ2 =

� 2π

0

�
π

0

f(θ,ϕ)g(θ,ϕ) sin θdθdϕ,



466 CHAPTER 16. SPHERICAL HARMONICS

where f, g ∈ L2(S2) and where Ω2 is the volume form on S2 (induced by the metric on
R

3). With this inner product, L2(S2) is a complete normed vector space using the norm,
�f� =

�
�f, f�, associated with this inner product, that is, L2(S2) is a Hilbert space. Now,

it can be shown that the Laplacian, ∆S2 , on the sphere is a self-adjoint linear operator with
respect to this inner product. As the functions, ym1

l1
and ym2

l2
with l1 �= l2 are eigenfunctions

corresponding to distinct eigenvalues (−l1(l1+1) and −l2(l2+1)), they are orthogonal, that
is,

�ym1
l1

, ym2
l2

� = 0, if l1 �= l2.

It is also not hard to show that for a fixed l,

�ym1
l

, ym2
l

� = δm1,m2 ,

that is, the functions ym
l

with −l ≤ m ≤ l form an orthonormal system and we denote
by Hl(S2) the (2l + 1)-dimensional space spanned by these functions. It turns out that
the functions ym

l
form a basis of the eigenspace, El, of ∆S2 associated with the eigenvalue

−l(l+ 1) so that El = Hl(S2) and that ∆S2 has no other eigenvalues. More is true. It turns
out that L2(S2) is the orthogonal Hilbert sum of the eigenspaces, Hl(S2). This means that
the Hl(S2) are

(1) mutually orthogonal

(2) closed, and

(3) The space L2(S2) is the Hilbert sum,
�∞

l=0 Hl(S2), which means that for every function,
f ∈ L2(S2), there is a unique sequence of spherical harmonics, fj ∈ Hl(S2), so that

f =
∞�

l=0

fl,

that is, the sequence
�

l

j=0 fj, converges to f (in the norm on L2(S2)). Observe that
each fl is a unique linear combination, fl =

�
ml

aml l
yml
l
.

Therefore, (3) gives us a Fourier decomposition on the sphere generalizing the familiar
Fourier decomposition on the circle. Furthermore, the Fourier coefficients , amll

, can be
computed using the fact that the ym

l
form an orthonormal Hilbert basis:

aml l
= �f, yml

l
�.

We also have the corresponding homogeneous harmonic functions, Hm

l
(r, θ,ϕ), on R

3

given by
Hm

l
(r, θ,ϕ) = rlym

l
(θ,ϕ).

If one starts computing explicity the Hm

l
for small values of l and m, one finds that it is

always possible to express these functions in terms of the cartesian coordinates x, y, z as
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homogeneous polynomials ! This remarkable fact holds in general: The eigenfunctions of
the Laplacian, ∆S2 , and thus, the spherical harmonics, are the restrictions of homogeneous
harmonic polynomials in R

3. Here is a list of bases of the homogeneous harmonic polynomials
of degree k in three variables up to k = 4 (thanks to Herman Gluck):

k = 0 1

k = 1 x, y, z

k = 2 x2 − y2, x2 − z2, xy, xz, yz

k = 3 x3 − 3xy2, 3x2y − y3, x3 − 3xz2, 3x2z − z3,

y3 − 3yz2, 3y2z − z3, xyz

k = 4 x4 − 6x2y2 + y4, x4 − 6x2z2 + z4, y4 − 6y2z2 + z4,

x3y − xy3, x3z − xz3, y3z − yz3,

3x2yz − yz3, 3xy2z − xz3, 3xyz2 − x3y.

Subsequent sections will be devoted to a proof of the important facts stated earlier.

16.3 The Laplace-Beltrami Operator

In order to define rigorously the Laplacian on the sphere, Sn ⊆ R
n+1, and establish its

relationship with the Laplacian on R
n+1, we need the definition of the Laplacian on a Rie-

mannian manifold, (M, g), the Laplace-Beltrami operator , as defined in Section 15.2 (Eugenio
Beltrami, 1835-1900). In that section, the Laplace-Beltrami operator is defined as an opera-
tor on differential forms but a more direct definition can be given for the Laplacian-Beltrami
operator on functions (using the covariant derivative, see the paragraph preceding Proposi-
tion 15.6). For the benefit of the reader who may not have read Section 15.2, we present
this definition of the divergence again.

Recall that a Riemannian metric, g, on a manifold, M , is a smooth family of inner
products, g = (gp), where gp is an inner product on the tangent space, TpM , for every
p ∈ M . The inner product, gp, on TpM , establishes a canonical duality between TpM
and T ∗

p
M , namely, we have the isomorphism, � : TpM → T ∗

p
M , defined such that for every

u ∈ TpM , the linear form, u� ∈ T ∗
p
M , is given by

u�(v) = gp(u, v), v ∈ TpM.

The inverse isomorphism, � : T ∗
p
M → TpM , is defined such that for every ω ∈ T ∗

p
M , the

vector, ω�, is the unique vector in TpM so that

gp(ω
�, v) = ω(v), v ∈ TpM.

The isomorphisms � and � induce isomorphisms between vector fields, X ∈ X(M), and one-
forms, ω ∈ A1(M). In particular, for every smooth function, f ∈ C∞(M), the vector field
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corresponding to the one-form, df , is the gradient , grad f , of f . The gradient of f is uniquely
determined by the condition

gp((grad f)p, v) = dfp(v), v ∈ TpM, p ∈ M.

If ∇X is the covariant derivative associated with the Levi-Civita connection induced by the
metric, g, then the divergence of a vector field, X ∈ X(M), is the function, divX : M → R,
defined so that

(divX)(p) = tr(Y (p) �→ (∇YX)p),

namely, for every p, (divX)(p) is the trace of the linear map, Y (p) �→ (∇YX)p. Then, the
Laplace-Beltrami operator , for short, Laplacian, is the linear operator,
∆ : C∞(M) → C∞(M), given by

∆f = div grad f.

Observe that the definition just given differs from the definition given in Section 15.2 by
a negative sign. We adopted this sign convention to conform with most of the literature on
spherical harmonics (where the negative sign is omitted). A consequence of this choice is
that the eigenvalues of the Laplacian are negative.

For more details on the Laplace-Beltrami operator, we refer the reader to Chapter 15
or to Gallot, Hulin and Lafontaine [60] (Chapter 4) or O’Neill [119] (Chapter 3), Postnikov
[125] (Chapter 13), Helgason [72] (Chapter 2) or Warner [147] (Chapters 4 and 6).

All this being rather abstact, it is useful to know how grad f , divX and ∆f are expressed
in a chart. If (U,ϕ) is a chart of M , with p ∈ M and if, as usual,

��
∂

∂x1

�

p

, . . . ,

�
∂

∂xn

�

p

�

denotes the basis of TpM induced by ϕ, the local expression of the metric g at p is given by
the n× n matrix, (gij)p, with

(gij)p = gp

��
∂

∂xi

�

p

,

�
∂

∂xj

�

p

�
.

The matrix (gij)p is symmetric, positive definite and its inverse is denoted (gij)p. We also
let |g|p = det(gij)p. For simplicity of notation we often omit the subscript p. Then, it can be
shown that for every function, f ∈ C∞(M), in local coordinates given by the chart (U,ϕ),
we have

grad f =
�

ij

gij
∂f

∂xj

∂

∂xi

,

where, as usual
∂f

∂xj

(p) =

�
∂

∂xj

�

p

f =
∂(f ◦ ϕ−1)

∂uj

(ϕ(p))



16.3. THE LAPLACE-BELTRAMI OPERATOR 469

and (u1, . . . , un) are the coordinate functions in R
n. There are formulae for divX and ∆f

involving the Christoffel symbols but the following formulae will be more convenient for our
purposes: For every vector field, X ∈ X(M), expressed in local coordinates as

X =
n�

i=1

Xi

∂

∂xi

we have

divX =
1�
|g|

n�

i=1

∂

∂xi

��
|g|Xi

�

and for every function, f ∈ C∞(M), the Laplacian, ∆f , is given by

∆f =
1�
|g|

�

i,j

∂

∂xi

��
|g| gij ∂f

∂xj

�
.

The above formula is proved in Proposition 15.5, assuming M is orientable. A different
derivation is given in Postnikov [125] (Chapter 13, Section 5).

One should check that for M = R
n with its standard coordinates, the Laplacian is given

by the familiar formula

∆f =
∂2f

∂x2
1

+ · · ·+ ∂2f

∂x2
n

.

Remark: A different sign convention is also used in defining the divergence, namely,

divX = − 1�
|g|

n�

i=1

∂

∂xi

��
|g|Xi

�
.

With this convention, which is the one used in Section 15.2, the Laplacian also has a negative
sign. This has the advantage that the eigenvalues of the Laplacian are nonnegative.

As an application, let us derive the formula for the Laplacian in spherical coordinates,

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ.

We have

∂

∂r
= sin θ cosϕ

∂

∂x
+ sin θ sinϕ

∂

∂y
+ cos θ

∂

∂z
= �r

∂

∂θ
= r

�
cos θ cosϕ

∂

∂x
+ cos θ sinϕ

∂

∂y
− sin θ

∂

∂z

�
= r�θ

∂

∂ϕ
= r

�
− sin θ sinϕ

∂

∂x
+ sin θ cosϕ

∂

∂y

�
= r�ϕ.
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Observe that �r, �θ and �ϕ are pairwise orthogonal. Therefore, the matrix (gij) is given by

(gij) =




1 0 0
0 r2 0
0 0 r2 sin2 θ





and |g| = r4 sin2 θ. The inverse of (gij) is

(gij) =




1 0 0
0 r−2 0
0 0 r−2 sin−2 θ



 .

We will let the reader finish the computation to verify that we get

∆f =
1

r2
∂

∂r

�
r2
∂f

∂r

�
+

1

r2 sin θ

∂

∂θ

�
sin θ

∂f

∂θ

�
+

1

r2 sin2 θ

∂2f

∂ϕ2
.

Since (θ,ϕ) are coordinates on the sphere S2 via

x = sin θ cosϕ

y = sin θ sinϕ

z = cos θ,

we see that in these coordinates, the metric, (�gij), on S2 is given by the matrix

(�gij) =
�
1 0
0 sin2 θ

�
,

that |�g| = sin2 θ, and that the inverse of (�gij) is

(�gij) =
�
1 0
0 sin−2 θ

�
.

It follows immediately that

∆S2f =
1

sin θ

∂

∂θ

�
sin θ

∂f

∂θ

�
+

1

sin2 θ

∂2f

∂ϕ2
,

so we have verified that

∆f =
1

r2
∂

∂r

�
r2
∂f

∂r

�
+

1

r2
∆S2f.

Let us now generalize the above formula to the Laplacian, ∆, on R
n+1 and the Laplacian,

∆Sn , on Sn, where

Sn = {(x1, . . . , xn+1) ∈ R
n+1 | x2

1 + · · ·+ x2
n+1 = 1}.
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Following Morimoto [113] (Chapter 2, Section 2), let us use “polar coordinates”. The map
from R+ × Sn to R

n+1 − {0} given by

(r, σ) �→ rσ

is clearly a diffeomorphism. Thus, for any system of coordinates, (u1, . . . , un), on Sn, the
tuple (u1, . . . , un, r) is a system of coordinates on R

n+1 − {0} called polar coordinates . Let
us establish the relationship between the Laplacian, ∆, on R

n+1 − {0} in polar coordinates
and the Laplacian, ∆Sn , on Sn in local coordinates (u1, . . . , un).

Proposition 16.1 If ∆ is the Laplacian on R
n+1 − {0} in polar coordinates (u1, . . . , un, r)

and ∆Sn is the Laplacian on the sphere, Sn, in local coordinates (u1, . . . , un), then

∆f =
1

rn
∂

∂r

�
rn

∂f

∂r

�
+

1

r2
∆Snf.

Proof . Let us compute the (n+1)×(n+1) matrix, G = (gij), expressing the metric on R
n+1

is polar coordinates and the n × n matrix, �G = (�gij), expressing the metric on Sn. Recall
that if σ ∈ Sn, then σ · σ = 1 and so,

∂σ

∂ui

· σ = 0,

as
∂σ

∂ui

· σ =
1

2

∂(σ · σ)
∂ui

= 0.

If x = rσ with σ ∈ Sn, we have

∂x

∂ui

= r
∂σ

∂ui

, 1 ≤ i ≤ n,

and
∂x

∂r
= σ.

It follows that

gij =
∂x

∂ui

· ∂x

∂uj

= r2
∂σ

∂ui

· ∂σ

∂uj

= r2�gij

gin+1 =
∂x

∂ui

· ∂x
∂r

= r
∂σ

∂ui

· σ = 0

gn+1n+1 =
∂x

∂r
· ∂x
∂r

= σ · σ = 1.

Consequently, we get

G =

�
r2 �G 0
0 1

�
,
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|g| = r2n|�g| and

G−1 =

�
r−2 �G−1 0

0 1

�
.

Using the above equations and

∆f =
1�
|g|

�

i,j

∂

∂xi

��
|g| gij ∂f

∂xj

�
,

we get

∆f =
1

rn
�

|�g|

n�

i,j=1

∂

∂xi

�
rn
�
|�g| 1

r2
�gij ∂f

∂xj

�
+

1

rn
�
|�g|

∂

∂r

�
rn
�

|�g| ∂f
∂r

�

=
1

r2
�
|�g|

n�

i,j=1

∂

∂xi

��
|�g| �gij ∂f

∂xj

�
+

1

rn
∂

∂r

�
rn

∂f

∂r

�

=
1

r2
∆Snf +

1

rn
∂

∂r

�
rn

∂f

∂r

�
,

as claimed.

It is also possible to express ∆Sn in terms of ∆Sn−1 . If en+1 = (0, . . . , 0, 1) ∈ R
n+1, then

we can view Sn−1 as the intersection of Sn with the hyperplane, xn+1 = 0, that is, as the set

Sn−1 = {σ ∈ Sn | σ · en+1 = 0}.

If (u1, . . . , un−1) are local coordinates on Sn−1, then (u1, . . . , un−1, θ) are local coordinates
on Sn, by setting

σ = sin θ �σ + cos θ en+1,

with �σ ∈ Sn−1 and 0 ≤ θ < π. Using these local coordinate systems, it is a good exercise to
find the relationship between ∆Sn and ∆Sn−1 , namely

∆Snf =
1

sinn−1 θ

∂

∂θ

�
sinn−1 θ

∂f

∂θ

�
+

1

sin2 θ
∆Sn−1f.

A fundamental property of the divergence is known as Green’s Formula. There are
actually two Greens’ Formulae but we will only need the version for an orientable manifold
without boundary given in Proposition 15.7. Recall that Green’s Formula states that if M
is a compact, orientable, Riemannian manifold without boundary, then, for every smooth
vector field, X ∈ X(M), we have

�

M

(divX)ΩM = 0,

where ΩM is the volume form on M induced by the metric.
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If M is a compact, orientable Riemannian manifold, then for any two smooth functions,
f, h ∈ C∞(M), we define �f, h� by

�f, h� =
�

M

fhΩM .

Then, it is not hard to show that �−,−� is an inner product on C∞(M).

An important property of the Laplacian on a compact, orientable Riemannian manifold
is that it is a self-adjoint operator. This fact has already been proved in the more general
case of an inner product on differential forms in Proposition 15.3 but it might be instructive
to give another proof in the special case of functions using Green’s Formula.

For this, we prove the following properties: For any two functions, f, h ∈ C∞(M), and
any vector field, X ∈ C∞(M), we have:

div(fX) = fdivX +X(f) = fdivX + g(grad f,X)

grad f (h) = g(grad f, gradh) = gradh (f).

Using these identities, we obtain the following important special case of Proposition 15.3:

Proposition 16.2 Let M be a compact, orientable, Riemannian manifold without boundary.
The Laplacian on M is self-adjoint, that is, for any two functions, f, h ∈ C∞(M), we have

�∆f, h� = �f,∆h�

or equivalently �

M

f∆hΩM =

�

M

h∆f ΩM .

Proof . By the two identities before Proposition 16.2,

f∆h = fdiv gradh = div(fgradh)− g(grad f, gradh)

and
h∆f = hdiv grad f = div(hgrad f)− g(gradh, grad f),

so we get
f∆h− h∆f = div(fgradh− hgrad f).

By Green’s Formula,
�

M

(f∆h− h∆f)ΩM =

�

M

div(fgradh− hgrad f)ΩM = 0,

which proves that ∆ is self-adjoint.

The importance of Proposition 16.2 lies in the fact that as �−,−� is an inner product on
C∞(M), the eigenspaces of ∆ for distinct eigenvalues are pairwise orthogonal. We will make
heavy use of this property in the next section on harmonic polynomials.
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16.4 Harmonic Polynomials, Spherical Harmonics and
L2(Sn)

Harmonic homogeneous polynomials and their restrictions to Sn, where

Sn = {(x1, . . . , xn+1) ∈ R
n+1 | x2

1 + · · ·+ x2
n+1 = 1},

turn out to play a crucial role in understanding the structure of the eigenspaces of the
Laplacian on Sn (with n ≥ 1). The results in this section appear in one form or another
in Stein and Weiss [142] (Chapter 4), Morimoto [113] (Chapter 2), Helgason [72] (Introduc-
tion, Section 3), Dieudonné [43] (Chapter 7), Axler, Bourdon and Ramey [12] (Chapter 5)
and Vilenkin [146] (Chapter IX). Some of these sources assume a fair amount of mathe-
matical background and consequently, uninitiated readers will probably find the exposition
rather condensed, especially Helgason. We tried hard to make our presentation more “user-
friendly”.

Definition 16.1 Let Pk(n+1) (resp. PC

k
(n+1)) denote the space of homogeneous polyno-

mials of degree k in n+1 variables with real coefficients (resp. complex coefficients) and let
Pk(Sn) (resp. PC

k
(Sn)) denote the restrictions of homogeneous polynomials in Pk(n+ 1) to

Sn (resp. the restrictions of homogeneous polynomials in PC

k
(n + 1) to Sn). Let Hk(n + 1)

(resp. HC

k
(n+1)) denote the space of (real) harmonic polynomials (resp. complex harmonic

polynomials), with
Hk(n+ 1) = {P ∈ Pk(n+ 1) | ∆P = 0}

and
HC

k
(n+ 1) = {P ∈ PC

k
(n+ 1) | ∆P = 0}.

Harmonic polynomials are sometimes called solid harmonics . Finally, Let Hk(Sn) (resp.
HC

k
(Sn)) denote the space of (real) spherical harmonics (resp. complex spherical harmonics)

be the set of restrictions of harmonic polynomials in Hk(n + 1) to Sn (resp. restrictions of
harmonic polynomials in HC

k
(n+ 1) to Sn).

A function, f : Rn → R (resp. f : Rn → C), is homogeneous of degree k iff

f(tx) = tkf(x), for all x ∈ R
n and t > 0.

The restriction map, ρ : Hk(n + 1) → Hk(Sn), is a surjective linear map. In fact, it is a
bijection. Indeed, if P ∈ Hk(n+ 1), observe that

P (x) = �x�k P
�

x

�x�

�
, with

x

�x� ∈ Sn,

for all x �= 0. Consequently, if P � Sn = Q � Sn, that is, P (σ) = Q(σ) for all σ ∈ Sn, then

P (x) = �x�k P
�

x

�x�

�
= �x�k Q

�
x

�x�

�
= Q(x)
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for all x �= 0, which implies P = Q (as P and Q are polynomials). Therefore, we have a
linear isomorphism between Hk(n+ 1) and Hk(Sn) (and between HC

k
(n+ 1) and HC

k
(Sn)).

It will be convenient to introduce some notation to deal with homogeneous polynomials.
Given n ≥ 1 variables, x1, . . . , xn, and any n-tuple of nonnegative integers, α = (α1, . . . ,αn),
let |α| = α1+ · · ·+αn, let xα = xα1

1 · · · xαn
n

and let α! = α1! · · ·αn!. Then, every homogeneous
polynomial, P , of degree k in the variables x1, . . . , xn can be written uniquely as

P =
�

|α|=k

cαx
α,

with cα ∈ R or cα ∈ C. It is well known that Pk(n) is a (real) vector space of dimension

dk =

�
n+ k − 1

k

�

and PC

k
(n) is a complex vector space of the same dimension, dk.

We can define an Hermitian inner product on PC

k
(n) whose restriction to Pk(n) is an

inner product by viewing a homogeneous polynomial as a differential operator as follows:
For every P =

�
|α|=k

cαxα ∈ PC

k
(n), let

∂(P ) =
�

|α|=k

cα
∂k

∂xα1
1 · · · ∂xαn

n

.

Then, for any two polynomials, P,Q ∈ PC

k
(n), let

�P,Q� = ∂(P )Q.

A simple computation shows that

�
�

|α|=k

aαx
α,

�

|α|=k

bαx
α

�
=

�

|α|=k

α! aαbα.

Therefore, �P,Q� is indeed an inner product. Also observe that

∂(x2
1 + · · ·+ x2

n
) =

∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

= ∆.

Another useful property of our inner product is this:

�P,QR� = �∂(Q)P,R�.
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Indeed.

�P,QR� = �QR,P �
= ∂(QR)P

= ∂(Q)(∂(R)P )

= ∂(R)(∂(Q)P )

= �R, ∂(Q)P �
= �∂(Q)P,R�.

In particular,

�(x2
1 + · · ·+ x2

n
)P,Q� = �P, ∂(x2

1 + · · ·+ x2
n
)Q� = �P,∆Q�.

Let us write �x�2 for x2
1 + · · ·+ x2

n
. Using our inner product, we can prove the following

important theorem:

Theorem 16.3 The map, ∆ : Pk(n) → Pk−2(n), is surjective for all n, k ≥ 2 (and simi-
larly for ∆ : PC

k
(n) → PC

k−2(n)). Furthermore, we have the following orthogonal direct sum
decompositions:

Pk(n) = Hk(n)⊕ �x�2 Hk−2(n)⊕ · · ·⊕ �x�2j Hk−2j(n)⊕ · · ·⊕ �x�2[k/2] H[k/2](n)

and

PC

k
(n) = HC

k
(n)⊕ �x�2 HC

k−2(n)⊕ · · ·⊕ �x�2j HC

k−2j(n)⊕ · · ·⊕ �x�2[k/2] HC

[k/2](n),

with the understanding that only the first term occurs on the right-hand side when k < 2.

Proof . If the map ∆ : PC

k
(n) → PC

k−2(n) is not surjective, then some nonzero polynomial,
Q ∈ PC

k−2(n), is orthogonal to the image of ∆. In particular, Q must be orthogonal to ∆P
with P = �x�2 Q ∈ PC

k
(n). So, using a fact established earlier,

0 = �Q,∆P � = ��x�2 Q,P � = �P, P �,

which implies that P = �x�2 Q = 0 and thus, Q = 0, a contradiction. The same proof is
valid in the real case.

We claim that we have an orthogonal direct sum decomposition,

PC

k
(n) = HC

k
(n)⊕ �x�2 PC

k−2(n),

and similarly in the real case, with the understanding that the second term is missing if
k < 2. If k = 0, 1, then PC

k
(n) = HC

k
(n) so this case is trivial. Assume k ≥ 2. Since

Ker∆ = HC

k
(n) and ∆ is surjective, dim(PC

k
(n)) = dim(HC

k
(n)) + dim(PC

k−2(n)), so it is
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sufficient to prove that HC

k
(n) is orthogonal to �x�2 PC

k−2(n). Now, if H ∈ HC

k
(n) and

P = �x�2 Q ∈ �x�2 PC

k−2(n), we have

��x�2 Q,H� = �Q,∆H� = 0,

so HC

k
(n) and �x�2 PC

k−2(n) are indeed orthogonal. Using induction, we immediately get the
orthogonal direct sum decomposition

PC

k
(n) = HC

k
(n)⊕ �x�2 HC

k−2(n)⊕ · · ·⊕ �x�2j HC

k−2j(n)⊕ · · ·⊕ �x�2[k/2] HC

[k/2](n)

and the corresponding real version.

Remark: Theorem 16.3 also holds for n = 1.

Theorem 16.3 has some important corollaries. Since every polynomial in n+ 1 variables
is the sum of homogeneous polynomials, we get:

Corollary 16.4 The restriction to Sn of every polynomial (resp. complex polynomial) in
n + 1 ≥ 2 variables is a sum of restrictions to Sn of harmonic polynomials (resp. complex
harmonic polynomials).

We can also derive a formula for the dimension of Hk(n) (and HC

k
(n)).

Corollary 16.5 The dimension, ak,n, of the space of harmonic polynomials, Hk(n), is given
by the formula

ak,n =

�
n+ k − 1

k

�
−

�
n+ k − 3

k − 2

�

if n, k ≥ 2, with a0,n = 1 and a1,n = n, and similarly for HC

k
(n). As Hk(n+1) is isomorphic

to Hk(Sn) (and HC

k
(n+ 1) is isomorphic to HC

k
(Sn)) we have

dim(HC

k
(Sn)) = dim(Hk(S

n)) = ak,n+1 =

�
n+ k

k

�
−
�
n+ k − 2

k − 2

�
.

Proof . The cases k = 0 and k = 1 are trivial since in this case Hk(n) = Pk(n). For k ≥ 2,
the result follows from the direct sum decomposition

Pk(n) = Hk(n)⊕ �x�2 Pk−2(n)

proved earlier. The proof is identical in the complex case.

Observe that when n = 2, we get ak,2 = 2 for k ≥ 1 and when n = 3, we get ak,3 = 2k+1
for all k ≥ 0, which we already knew from Section 16.2. The formula even applies for n = 1
and yields ak,1 = 0 for k ≥ 2.
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Remark: It is easy to show that

ak,n+1 =

�
n+ k − 1

n− 1

�
+

�
n+ k − 2

n− 1

�

for k ≥ 2, see Morimoto [113] (Chapter 2, Theorem 2.4) or Dieudonné [43] (Chapter 7,
formula 99), where a different proof technique is used.

Let L2(Sn) be the space of (real) square-integrable functions on the sphere, Sn. We have
an inner product on L2(Sn) given by

�f, g� =
�

Sn

fgΩn,

where f, g ∈ L2(Sn) and where Ωn is the volume form on Sn (induced by the metric on
R

n+1). With this inner product, L2(Sn) is a complete normed vector space using the norm,
�f� = �f�2 =

�
�f, f�, associated with this inner product, that is, L2(Sn) is a Hilbert space.

In the case of complex-valued functions, we use the Hermitian inner product

�f, g� =
�

Sn

f gΩn

and we get the complex Hilbert space, L2
C
(Sn). We also denote by C(Sn) the space of

continuous (real) functions on Sn with the L∞ norm, that is,

�f�∞ = sup{|f(x)|}x∈Sn

and by CC(Sn) the space of continuous complex-valued functions on Sn also with the L∞

norm. Recall that C(Sn) is dense in L2(Sn) (and CC(Sn) is dense in L2
C
(Sn)). The following

proposition shows why the spherical harmonics play an important role:

Proposition 16.6 The set of all finite linear combinations of elements in
�∞

k=0 Hk(Sn)
(resp.

�∞
k=0 HC

k
(Sn)) is

(i) dense in C(Sn) (resp. in CC(Sn)) with respect to the L∞-norm;

(ii) dense in L2(Sn) (resp. dense in L2
C
(Sn)).

Proof . (i) As Sn is compact, by the Stone-Weierstrass approximation theorem (Lang [93],
Chapter III, Corollary 1.3), if g is continuous on Sn, then it can be approximated uniformly
by polynomials, Pj, restricted to Sn. By Corollary 16.4, the restriction of each Pj to Sn is a
linear combination of elements in

�∞
k=0 Hk(Sn).

(ii) We use the fact that C(Sn) is dense in L2(Sn). Given f ∈ L2(Sn), for every � > 0,
we can choose a continuous function, g, so that �f − g�2 < �/2. By (i), we can find a linear
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combination, h, of elements in
�∞

k=0 Hk(Sn) so that �g − h�∞ < �/(2
�

vol(Sn)), where
vol(Sn) is the volume of Sn (really, area). Thus, we get

�f − h�2 ≤ �f − g�2 + �g − h�2 < �/2 +
�
vol(Sn) �g − h�∞ < �/2 + �/2 = �,

which proves (ii). The proof in the complex case is identical.

We need one more proposition before showing that the spaces Hk(Sn) constitute an
orthogonal Hilbert space decomposition of L2(Sn).

Proposition 16.7 For every harmonic polynomial, P ∈ Hk(n+ 1) (resp. P ∈ HC

k
(n+ 1)),

the restriction, H ∈ Hk(Sn) (resp. H ∈ HC

k
(Sn)), of P to Sn is an eigenfunction of ∆Sn for

the eigenvalue −k(n+ k − 1).

Proof . We have
P (rσ) = rkH(σ), r > 0, σ ∈ Sn,

and by Proposition 16.1, for any f ∈ C∞(Rn+1), we have

∆f =
1

rn
∂

∂r

�
rn

∂f

∂r

�
+

1

r2
∆Snf.

Consequently,

∆P = ∆(rkH) =
1

rn
∂

∂r

�
rn

∂(rkH)

∂r

�
+

1

r2
∆Sn(rkH)

=
1

rn
∂

∂r

�
krn+k−1H

�
+ rk−2∆SnH

=
1

rn
k(n+ k − 1)rn+k−2H + rk−2∆SnH

= rk−2(k(n+ k − 1)H +∆SnH).

Thus,
∆P = 0 iff ∆SnH = −k(n+ k − 1)H,

as claimed.

From Proposition 16.7, we deduce that the space Hk(Sn) is a subspace of the eigenspace,
Ek, of ∆Sn , associated with the eigenvalue −k(n + k − 1) (and similarly for HC

k
(Sn)). Re-

markably, Ek = Hk(Sn) but it will take more work to prove this.

What we can deduce immediately is that Hk(Sn) and Hl(Sn) are pairwise orthogonal
whenever k �= l. This is because, by Proposition 16.2, the Laplacian is self-adjoint and thus,
any two eigenspaces, Ek and El are pairwise orthogonal whenever k �= l and as Hk(Sn) ⊆
Ek and Hl(Sn) ⊆ El, our claim is indeed true. Furthermore, by Proposition 16.5, each
Hk(Sn) is finite-dimensional and thus, closed. Finally, we know from Proposition 16.6 that�∞

k=0 Hk(Sn) is dense in L2(Sn). But then, we can apply a standard result from Hilbert
space theory (for example, see Lang [93], Chapter V, Proposition 1.9) to deduce the following
important result:



480 CHAPTER 16. SPHERICAL HARMONICS

Theorem 16.8 The family of spaces, Hk(Sn) (resp. HC

k
(Sn)) yields a Hilbert space direct

sum decomposition

L2(Sn) =
∞�

k=0

Hk(S
n) (resp. L2

C
(Sn) =

∞�

k=0

HC

k
(Sn)),

which means that the summands are closed, pairwise orthogonal, and that every f ∈ L2(Sn)
(resp. f ∈ L2

C
(Sn)) is the sum of a converging series

f =
∞�

k=0

fk,

in the L2-norm, where the fk ∈ Hk(Sn) (resp. fk ∈ HC

k
(Sn)) are uniquely determined

functions. Furthermore, given any orthonormal basis, (Y 1
k
, . . . , Y

ak,n+1

k
), of Hk(Sn), we have

fk =

ak,n+1�

mk=1

ck,mk
Y mk
k

, with ck,mk
= �f, Y mk

k
�.

The coefficients ck,mk
are “generalized” Fourier coefficients with respect to the Hilbert

basis {Y mk
k

| 1 ≤ mk ≤ ak,n+1, k ≥ 0}. We can finally prove the main theorem of this section.

Theorem 16.9

(1) The eigenspaces (resp. complex eigenspaces) of the Laplacian, ∆Sn, on Sn are the
spaces of spherical harmonics,

Ek = Hk(S
n) (resp. Ek = HC

k
(Sn))

and Ek corresponds to the eigenvalue −k(n+ k − 1).

(2) We have the Hilbert space direct sum decompositions

L2(Sn) =
∞�

k=0

Ek (resp. L2
C
(Sn) =

∞�

k=0

Ek).

(3) The complex polynomials of the form (c1x1+ · · ·+ cn+1xn+1)k, with c21+ · · ·+ c2
n+1 = 0,

span the space HC

k
(n+ 1), for k ≥ 1.

Proof . We follow essentially the proof in Helgason [72] (Introduction, Theorem 3.1). In (1)
and (2) we only deal with the real case, the proof in the complex case being identical.

(1) We already know that the integers −k(n + k − 1) are eigenvalues of ∆Sn and that
Hk(Sn) ⊆ Ek. We will prove that ∆Sn has no other eigenvalues and no other eigenvectors
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using the Hilbert basis, {Y mk
k

| 1 ≤ mk ≤ ak,n+1, k ≥ 0}, given by Theorem 16.8. Let λ be
any eigenvalue of ∆Sn and let f ∈ L2(Sn) be any eigenfunction associated with λ so that

∆f = λ f.

We have a unique series expansion

f =
∞�

k=0

ak,n+1�

mk=1

ck,mk
Y mk
k

,

with ck,mk
= �f, Y mk

k
�. Now, as ∆Sn is self-adjoint and ∆Y mk

k
= −k(n + k − 1)Y mk

k
, the

Fourier coefficients, dk,mk
, of ∆f are given by

dk,mk
= �∆f, Y mk

k
� = �f,∆Y mk

k
� = −k(n+ k − 1)�f, Y mk

k
� = −k(n+ k − 1)ck,mk

.

On the other hand, as ∆f = λ f , the Fourier coefficients of ∆f are given by

dk,mk
= λck,mk

.

By uniqueness of the Fourier expansion, we must have

λck,mk
= −k(n+ k − 1)ck,mk

for all k ≥ 0.

Since f �= 0, there some k such that ck,mk
�= 0 and we must have

λ = −k(n+ k − 1)

for any such k. However, the function k �→ −k(n+k−1) reaches its maximum for k = −n−1
2

and as n ≥ 1, it is strictly decreasing for k ≥ 0, which implies that k is unique and that

cj,mj = 0 for all j �= k.

Therefore, f ∈ Hk(Sn) and the eigenvalues of ∆Sn are exactly the integers −k(n+ k− 1) so
Ek = Hk(Sn), as claimed.

Since we just proved that Ek = Hk(Sn), (2) follows immediately from the Hilbert decom-
position given by Theorem 16.8.

(3) If H = (c1x1 + · · ·+ cn+1xn+1)k, with c21 + · · ·+ c2
n+1 = 0, then for k ≤ 1 is is obvious

that ∆H = 0 and for k ≥ 2 we have

∆H = k(k − 1)(c21 + · · ·+ c2
n+1)(c1x1 + · · ·+ cn+1xn+1)

k−2 = 0,

so H ∈ HC

k
(n+ 1). A simple computation shows that for every Q ∈ PC

k
(n+ 1), if

c = (c1, . . . , cn+1), then we have

∂(Q)(c1x1 + · · ·+ cn+1xn+1)
m = m(m− 1) · · · (m− k + 1)Q(c)(c1x1 + · · ·+ cn+1xn+1)

m−k,
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for all m ≥ k ≥ 1.

Assume that HC

k
(n+ 1) is not spanned by the complex polynomials of the form (c1x1 +

· · ·+cn+1xn+1)k, with c21+ · · ·+c2
n+1 = 0, for k ≥ 1. Then, some Q ∈ HC

k
(n+1) is orthogonal

to all polynomials of the form H = (c1x1 + · · ·+ cn+1xn+1)k, with c21 + · · ·+ c2
n+1 = 0. Recall

that

�P, ∂(Q)H� = �QP,H�

and apply this equation to P = Q(c), H and Q. Since

∂(Q)H = ∂(Q)(c1x1 + · · ·+ cn+1xn+1)
k = k!Q(c),

as Q is orthogonal to H, we get

k!�Q(c), Q(c)� = �Q(c), k!Q(c)� = �Q(c), ∂(Q)H� = �QQ(c), H� = Q(c)�Q,H� = 0,

which implies Q(c) = 0. Consequently, Q(x1, . . . , xn+1) vanishes on the complex algebraic
variety,

{(x1, . . . , xn+1) ∈ C
n+1 | x2

1 + · · ·+ x2
n+1 = 0}.

By the Hilbert Nullstellensatz , some power, Qm, belongs to the ideal, (x2
1 + · · · + x2

n+1),
generated by x2

1+· · ·+x2
n+1. Now, if n ≥ 2, it is well-known that the polynomial x2

1+· · ·+x2
n+1

is irreducible so the ideal (x2
1 + · · · + x2

n+1) is a prime ideal and thus, Q is divisible by
x2
1+· · ·+x2

n+1. However, we know from the proof of Theorem 16.3 that we have an orthogonal
direct sum

PC

k
(n+ 1) = HC

k
(n+ 1)⊕ �x�2 PC

k−2(n+ 1).

Since Q ∈ HC

k
(n+1) and Q is divisible by x2

1 + · · ·+ x2
n+1 , we must have Q = 0. Therefore,

if n ≥ 2, we proved (3). However, when n = 1, we know from Section 16.1 that the complex
harmonic homogeneous polynomials in two variables, P (x, y), are spanned by the real and
imaginary parts, Uk, Vk of the polynomial (x + iy)k = Uk + iVk. Since (x− iy)k = Uk − iVk

we see that

Uk =
1

2

�
(x+ iy)k + (x− iy)k

�
, Vk =

1

2i

�
(x+ iy)k − (x− iy)k

�
,

and as 1 + i2 = 1 + (−i)2 = 0, the space HC

k
(R2) is spanned by (x+ iy)k and (x− iy)k (for

k ≥ 1), so (3) holds for n = 1 as well.

As an illustration of part (3) of Theorem 16.9, the polynomials (x1+ i cos θx2+ i sin θx3)k

are harmonic. Of course, the real and imaginary part of a complex harmonic polynomial
(c1x1 + · · ·+ cn+1xn+1)k are real harmonic polynomials.

In the next section, we try to show how spherical harmonics fit into the broader framework
of linear respresentations of (Lie) groups.
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16.5 Spherical Functions and Linear Representations
of Lie Groups; A Glimpse

In this section, we indicate briefly how Theorem 16.9 (except part (3)) can be viewed as a
special case of a famous theorem known as the Peter-Weyl Theorem about unitary represen-
tations of compact Lie groups (Herman, Klauss, Hugo Weyl, 1885-1955). First, we review
the notion of a linear representation of a group. A good and easy-going introduction to
representations of Lie groups can be found in Hall [70]. We begin with finite-dimensional
representations.

Definition 16.2 Given a Lie group, G, and a vector space, V , of dimension n, a linear
representation of G of dimension (or degree n) is a group homomorphism, U : G → GL(V ),
such that the map, g �→ U(g)(u), is continuous for every u ∈ V and where GL(V ) denotes
the group of invertible linear maps from V to itself. The space, V , called the representation
space may be a real or a complex vector space. If V has a Hermitian (resp Euclidean) inner
product, �−,−�, we say that U : G → GL(V ) is a unitary representation iff

�U(g)(u), U(g)(v)� = �u, v�, for all g ∈ G and all u, v ∈ V.

Thus, a linear representation of G is a map, U : G → GL(V ), satisfying the properties:

U(gh) = U(g)U(h)

U(g−1) = U(g)−1

U(1) = I.

For simplicity of language, we usually abbreviate linear representation as representa-
tion. The representation space, V , is also called a G-module since the representation,
U : G → GL(V ), is equivalent to the left action, · : G × V → V , with g · v = U(g)(v).
The representation such that U(g) = I for all g ∈ G is called the trivial representation.

As an example, we describe a class of representations of SL(2,C), the group of complex
matrices with determinant +1,

�
a b
c d

�
, ad− bc = 1.

Recall that PC

k
(2) denotes the vector space of complex homogeneous polynomials of degree

k in two variables, (z1, z2). For every matrix, A ∈ SL(2,C), with

A =

�
a b
c d

�

for every homogeneous polynomial, Q ∈ PC

k
(2), we define Uk(A)(Q(z1, z2)) by

Uk(A)(Q(z1, z2)) = Q(dz1 − bz2,−cz1 + az2).
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If we think of the homogeneous polynomial, Q(z1, z2), as a function, Q
�
z1

z2

�
, of the vector�

z1

z2

�
, then

Uk(A)

�
Q

�
z1
z2

��
= QA−1

�
z1
z2

�
= Q

�
d −b
−c a

��
z1
z2

�
.

The expression above makes it clear that

Uk(AB) = Uk(A)Uk(B)

for any two matrices, A,B ∈ SL(2,C), so Uk is indeed a representation of SL(2,C) into
PC

k
(2). It can be shown that the representations, Uk, are irreducible and that every rep-

resentation of SL(2,C) is equivalent to one of the Uk’s (see Bröcker and tom Dieck [25],
Chapter 2, Section 5). The representations, Uk, are also representations of SU(2). Again,
they are irreducible representations of SU(2) and they constitute all of them (up to equiv-
alence). The reader should consult Hall [70] for more examples of representations of Lie
groups.

One might wonder why we considered SL(2,C) rather than SL(2,R). This is because it
can be shown that SL(2,R) has no nontrivial unitary (finite-dimensional) representations!
For more on representations of SL(2,R), see Dieudonné [43] (Chapter 14).

Given any basis, (e1, . . . , en), of V , each U(g) is represented by an n× n matrix,
U(g) = (Uij(g)). We may think of the scalar functions, g �→ Uij(g), as special functions on
G. As explained in Dieudonné [43] (see also Vilenkin [146]), essentially all special functions
(Legendre polynomials, ultraspherical polynomials, Bessel functions, etc.) arise in this way
by choosing some suitable G and V . There is a natural and useful notion of equivalence of
representations:

Definition 16.3 Given any two representations, U1 : G → GL(V1) and U2 : G → GL(V2), a
G-map (or morphism of representations), ϕ : U1 → U2, is a linear map, ϕ : V1 → V2, so that
the following diagram commutes for every g ∈ G:

V1
U1(g) ��

ϕ

��

V1

ϕ

��
V2

U2(g) �� V2.

The space of all G-maps between two representations as above is denoted HomG(U1, U2).
Two representations U1 : G → GL(V1) and U2 : G → GL(V2) are equivalent iff ϕ : V1 → V2

is an invertible linear map (which implies that dimV1 = dimV2). In terms of matrices, the
representations U1 : G → GL(V1) and U2 : G → GL(V2) are equivalent iff there is some
invertible n× n matrix, P , so that

U2(g) = PU1(g)P
−1, g ∈ G.
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If W ⊆ V is a subspace of V , then in some cases, a representation U : G → GL(V ) yields
a representation U : G → GL(W ). This is interesting because under certain conditions on
G (e.g., G compact) every representation may be decomposed into a “sum” of so-called
irreducible representations and thus, the study of all representations of G boils down to the
study of irreducible representations of G (for instance, see Knapp [89] (Chapter 4, Corollary
4.7) or Bröcker and tom Dieck [25] (Chapter 2, Proposition 1.9).

Definition 16.4 Let U : G → GL(V ) be a representation of G. If W ⊆ V is a subspace of
V , then we say that W is invariant (or stable) under U iff U(g)(w) ∈ W , for all g ∈ G and all
w ∈ W . If W is invariant under U , then we have a homomorphism, U : G → GL(W ), called
a subrepresentation of G. A representation, U : G → GL(V ), with V �= (0) is irreducible
iff it only has the two subrepresentations, U : G → GL(W ), corresponding to W = (0) or
W = V .

An easy but crucial lemma about irreducible representations is “Schur’s Lemma”.

Lemma 16.10 (Schur’s Lemma) Let U1 : G → GL(V ) and U2 : G → GL(W ) be any two
real or complex representations of a group, G. If U1 and U2 are irreducible, then the following
properties hold:

(i) Every G-map, ϕ : U1 → U2, is either the zero map or an isomorphism.

(ii) If U1 is a complex representation, then every G-map, ϕ : U1 → U1, is of the form,
ϕ = λid, for some λ ∈ C.

Proof . (i) Observe that the kernel, Ker ϕ ⊆ V , of ϕ is invariant under U1. Indeed, for every
v ∈ Ker ϕ and every g ∈ G, we have

ϕ(U1(g)(v)) = U2(g)(ϕ(v)) = U2(g)(0) = 0,

so U1(g)(v) ∈ Ker ϕ. Thus, U1 : G → GL(Ker ϕ) is a subrepresentation of U1 and as U1 is
irreducible, either Ker ϕ = (0) or Ker ϕ = V . In the second case, ϕ = 0. If Ker ϕ = (0),
then ϕ is injective. However, ϕ(V ) ⊆ W is invariant under U2 since for every v ∈ V and
every g ∈ G,

U2(g)(ϕ(v)) = ϕ(U1(g)(v)) ∈ ϕ(V ),

and as ϕ(V ) �= (0) (as V �= (0) since U1 is irreducible) and U2 is irreducible, we must have
ϕ(V ) = W , that is, ϕ is an isomorphism.

(ii) Since V is a complex vector space, the linear map, ϕ, has some eigenvalue, λ ∈ C.
Let Eλ ⊆ V be the eigenspace associated with λ. The subspace Eλ is invariant under U1

since for every u ∈ Eλ and every g ∈ G, we have

ϕ(U1(g)(u)) = U1(g)(ϕ(u)) = U1(g)(λu) = λU1(g)(u),
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so U1 : G → GL(Eλ) is a subrepresentation of U1 and as U1 is irreducible and Eλ �= (0), we
must have Eλ = V .

An interesting corollary of Schur’s Lemma is that every complex irreducible represent-
taion of a commutative group is one-dimensional.

Let us now restrict our attention to compact Lie groups. If G is a compact Lie group,
then it is known that it has a left and right-invariant volume form, ωG, so we can define the
integral of a (real or complex) continuous function, f , defined on G by

�

G

f =

�

G

f ωG,

also denoted
�
G
f dµG or simply

�
G
f(t) dt, with ωG normalized so that

�
G
ωG = 1. (See

Section 9.4, or Knapp [89], Chapter 8, or Warner [147], Chapters 4 and 6.) Because G
is compact, the Haar measure, µG, induced by ωG is both left and right-invariant (G is a
unimodular group) and our integral has the following invariance properties:

�

G

f(t) dt =

�

G

f(st) dt =

�

G

f(tu) dt =

�

G

f(t−1) dt,

for all s, u ∈ G (see Section 9.4).

Since G is a compact Lie group, we can use an “averaging trick” to show that every (finite-
dimensional) representation is equivalent to a unitary representation (see Bröcker and tom
Dieck [25] (Chapter 2, Theorem 1.7) or Knapp [89] (Chapter 4, Proposition 4.6).

If we define the Hermitian inner product,

�f, g� =
�

G

f g ωG,

then, with this inner product, the space of square-integrable functions, L2
C
(G), is a Hilbert

space. We can also define the convolution, f ∗ g, of two functions, f, g ∈ L2
C
(G), by

(f ∗ g)(x) =
�

G

f(xt−1)g(t)dt =

�

G

f(t)g(t−1x)dt

In general, f ∗ g �= g ∗ f unless G is commutative. With the convolution product, L2
C
(G)

becomes an associative algebra (non-commutative in general).

This leads us to consider unitary representations of G into the infinite-dimensional vector
space, L2

C
(G). The definition is the same as in Definition 16.2, except that GL(L2

C
(G)) is

the group of automorphisms (unitary operators), Aut(L2
C
(G)), of the Hilbert space, L2

C
(G)

and
�U(g)(u), U(g)(v)� = �u, v�

with respect to the inner product on L2
C
(G). Also, in the definition of an irreducible repre-

sentation, U : G → V , we require that the only closed subrepresentations, U : G → W , of
the representation, U : G → V , correspond to W = (0) or W = V .



16.5. SPHERICAL FUNCTIONS AND REPRESENTATIONS OF LIE GROUPS 487

The Peter Weyl Theorem gives a decomposition of L2
C
(G) as a Hilbert sum of spaces that

correspond to irreducible unitary representations of G. We present a version of the Peter
Weyl Theorem found in Dieudonné [43] (Chapters 3-8) and Dieudonné [44] (Chapter XXI,
Sections 1-4), which contains complete proofs. Other versions can be found in Bröcker and
tom Dieck [25] (Chapter 3), Knapp [89] (Chapter 4) or Duistermaat and Kolk [53] (Chapter
4). A good preparation for these fairly advanced books is Deitmar [40].

Theorem 16.11 (Peter-Weyl (1927)) Given a compact Lie group, G, there is a decompo-
sition of L2

C
(G) as a Hilbert sum,

L2
C
(G) =

�

ρ

aρ,

of countably many two-sided ideals, aρ, where each aρ is isomorphic to a finite-dimensional
algebra of nρ × nρ complex matrices. More precisely, there is a basis of aρ consisting of

smooth pairwise orthogonal functions, m(ρ)
ij
, satisfying various properties, including

�m(ρ)
ij
,m(ρ)

ij
� = nρ,

and if we form the matrix, Mρ(g) = ( 1
nρ
m(ρ)

ij
(g)), then the map, g �→ Mρ(g) is an irreducible

unitary representation of G in the vector space C
nρ. Furthermore, every irreducible

representation of G is equivalent to some Mρ, so the set of indices, ρ, corresponds to the set
of equivalence classes of irreducible unitary representations of G. The function, uρ, given by

uρ(g) =

nρ�

j=1

m(ρ)
jj
(g) = nρtr(Mρ(g))

is the unit of the algebra aρ and the orthogonal projection of L2
C
(G) onto aρ is the map

f �→ uρ ∗ f,

that is, convolution with uρ.

Remark: The function, χρ = 1
nρ

uρ = tr(Mρ), is the character of G associated with the
representation of G into Mρ. The functions, χρ, form an orthogonal system. Beware that
they are not homomorphisms of G into C unless G is commutative. The characters of G are
the key to the definition of the Fourier transform on a (compact) group, G.

A complete proof of Theorem 16.11 is given in Dieudonné [44], Chapter XXI, Section 2,
but see also Sections 3 and 4.

There is more to the Peter Weyl Theorem: It gives a description of all unitary represen-
tations of G into a separable Hilbert space (see Dieudonné [44], Chapter XXI, Section 4). If
V : G → Aut(E) is such a representation, then for every ρ as above, the map

x �→ V (uρ)(x) =

�

G

(V (s)(x))uρ(s) ds
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is an orthogonal projection of E onto a closed subspace, Eρ. Then, E is the Hilbert sum,
E =

�
ρ
Eρ, of those Eρ such that Eρ �= (0) and each such Eρ is itself a (countable) Hilbert

sum of closed spaces invariant under V . The subrepresentations of V corresponding to these
subspaces of Eρ are all equivalent to Mρ = Mρ and hence, irreducible. This is why every
(unitary) representation of G is equivalent to some representation of the form Mρ.

An interesting special case is the case of the so-called regular representation of G in
L2
C
(G) itself. The (left) regular representation, R, of G in L2

C
(G) is defined by

(Rs(f))(t) = λs(f)(t) = f(s−1t), f ∈ L2
C
(G), s, t ∈ G.

It turns out that we also get the same Hilbert sum,

L2
C
(G) =

�

ρ

aρ,

but this time, the aρ generally do not correspond to irreducible subrepresentations. However,

aρ splits into nρ left ideals, b
(ρ)
j
, where b(ρ)

j
corresponds to the jth columm of Mρ and all the

subrepresentations of G in b(ρ)
j

are equivalent to Mρ and thus, are irreducible (see Dieudonné
[43], Chapter 3).

Finally, assume that besides the compact Lie group, G, we also have a closed subgroup,K,
of G. Then, we know that M = G/K is a manifold called a homogeneous space and G acts on
M on the left. For example, if G = SO(n+1) and K = SO(n), then Sn = SO(n+1)/SO(n)
(for instance, see Warner [147], Chapter 3). The subspace of L2

C
(G) consisting of the functions

f ∈ L2
C
(G) that are right-invariant under the action of K, that is, such that

f(su) = f(s) for all s ∈ G and all u ∈ K

form a closed subspace of L2
C
(G) denoted L2

C
(G/K). For example, if G = SO(n + 1) and

K = SO(n), then L2
C
(G/K) = L2

C
(Sn).

It turns out that L2
C
(G/K) is invariant under the regular representation, R, of G in

L2
C
(G), so we get a subrepresentation (of the regular representation) of G in L2

C
(G/K).

Again, the Peter-Weyl gives us a Hilbert sum decomposition of L2
C
(G/K) of the form

L2
C
(G/K) =

�

ρ

Lρ = L2
C
(G/K) ∩ aρ,

for the same ρ’s as before. However, these subrepresentations of R in Lρ are not necessarily
irreducible. What happens is that there is some dρ with 0 ≤ dρ ≤ nρ so that if dρ ≥ 1,
then Lσ is the direct sum of the first dρ columns of Mρ (see Dieudonné [43], Chapter 6 and
Dieudonné [45], Chapter XXII, Sections 4-5).

We can also consider the subspace of L2
C
(G) consisting of the functions, f ∈ L2

C
(G), that

are left-invariant under the action of K, that is, such that

f(ts) = f(s) for all s ∈ G and all t ∈ K.
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This is a closed subspace of L2
C
(G) denoted L2

C
(K\G). Then, we get a Hilbert sum decom-

position of L2
C
(K\G) of the form

L2
C
(K\G) =

�

ρ

L�
ρ
= L2

C
(K\G) ∩ aρ,

and for the same dρ as before, L�
σ
is the direct sum of the first dρ rows of Mρ. We can also

consider

L2
C
(K\G/K) = L2

C
(G/K) ∩ L2

C
(K\G)

= {f ∈ L2
C
(G) | f(tsu) = f(s)} for all s ∈ G and all t, u ∈ K.

From our previous discussion, we see that we have a Hilbert sum decomposition

L2
C
(K\G/K) =

�

ρ

Lρ ∩ L�
ρ

and each Lρ ∩ L�
ρ
for which dρ ≥ 1 is a matrix algebra of dimension d2

ρ
. As a consequence,

the algebra L2
C
(K\G/K) is commutative iff dρ ≤ 1 for all ρ.

If the algebra L2
C
(K\G/K) is commutative (for the convolution product), we say that

(G,K) is a Gelfand pair (see Dieudonné [43], Chapter 8 and Dieudonné [45], Chapter XXII,
Sections 6-7). In this case, the Lρ in the Hilbert sum decomposition of L2

C
(G/K) are nontriv-

ial of dimension nρ iff dρ = 1 and the subrepresentation, U, (of the regular representation)
of G into Lρ is irreducible and equivalent to Mρ. The space Lρ is generated by the functions,

m(ρ)
1,1, . . . ,m

(ρ)
nρ,1, but the function

ωρ(s) =
1

nρ

m(ρ)
1,1(s)

plays a special role. This function called a zonal spherical function has some interesting
properties. First, ωρ(e) = 1 (where e is the identity element of the group, G) and

ωρ(ust) = ωρ(s) for all s ∈ G and all u, t ∈ K.

In addition, ωρ is of positive type. A function, f : G → C, is of positive type iff

n�

j,k=1

f(s−1
j
sk)zjzk ≥ 0,

for every finite set, {s1, . . . , sn}, of elements of G and every finite tuple, (z1, . . . , zn) ∈ C
n.

Because the subrepresentation of G into Lρ is irreducible, the function ωρ generates Lρ under
left translation. This means the following: If we recall that for any function, f , on G,

λs(f)(t) = f(s−1t), s, t ∈ G,
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then, Lρ is generated by the functions λs(ωρ), as s varies in G. The function ωρ also satisfies
the following property:

ωρ(s) = �U(s)(ωρ),ωρ�.

The set of zonal spherical functions on G/K is denoted S(G/K). It is a countable set.

The notion of Gelfand pair also applies to locally-compact unimodular groups that are
not necessary compact but we will not discuss this notion here. Curious readers may consult
Dieudonné [43] (Chapters 8 and 9) and Dieudonné [45] (Chapter XXII, Sections 6-9).

It turns out that G = SO(n + 1) and K = SO(n) form a Gelfand pair (see Dieudonné
[43], Chapters 7-8 and Dieudonné [46], Chapter XXIII, Section 38). In this particular case,
ρ = k is any nonnegative integer and Lρ = Ek, the eigenspace of the Laplacian on Sn

corresponding to the eigenvalue −k(n + k − 1). Therefore, the regular representation of
SO(n) into Ek = HC

k
(Sn) is irreducible. This can be proved more directly, for example,

see Helgason [72] (Introduction, Theorem 3.1) or Bröcker and tom Dieck [25] (Chapter 2,
Proposition 5.10).

The zonal spherical harmonics, ωk, can be expressed in terms of the ultraspherical poly-
nomials (also called Gegenbauer polynomials), P (n−1)/2

k
(up to a constant factor), see Stein

and Weiss [142] (Chapter 4), Morimoto [113] (Chapter 2) and Dieudonné [43] (Chapter 7).

For n = 2, P
1
2
k

is just the ordinary Legendre polynomial (up to a constant factor). We will
say more about the zonal spherical harmonics and the ultraspherical polynomials in the next
two sections.

The material in this section belongs to the overlapping areas of representation theory and
noncommutative harmonic analysis . These are deep and vast areas. Besides the references
cited earlier, for noncommutative harmonic analysis, the reader may consult Folland [54] or
Taylor [144], but they may find the pace rather rapid. Another great survey on both topics
is Kirillov [87], although it is not geared for the beginner.

16.6 Reproducing Kernel, Zonal Spherical Functions
and Gegenbauer Polynomials

We now return to Sn and its spherical harmonics. The previous section suggested that
zonal spherical functions play a special role. In this section, we describe the zonal spherical
functions on Sn and show that they essentially come from certain polynomials generalizing
the Legendre polyomials known as the Gegenbauer Polynomials . Most proof will be omitted.
We refer the reader to Stein and Weiss [142] (Chapter 4) and Morimoto [113] (Chapter 2)
for a complete exposition with proofs.

Recall that the space of spherical harmonics, HC

k
(Sn), is the image of the space of homoge-

neous harmonic poynomials, PC

k
(n+1), under the restriction map. It is a finite-dimensional
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space of dimension

ak,n+1 =

�
n+ k

k

�
−

�
n+ k − 2

k − 2

�
,

if n ≥ 1 and k ≥ 2, with a0,n+1 = 1 and a1,n+1 = n + 1. Let (Y 1
k
, . . . , Y

ak,n+1

k
) be any

orthonormal basis of HC

k
(Sn) and define Fk(σ, τ) by

Fk(σ, τ) =

ak,n+1�

i=1

Y i

k
(σ)Y i

k
(τ), σ, τ ∈ Sn.

The following proposition is easy to prove (see Morimoto [113], Chapter 2, Lemma 1.19 and
Lemma 2.20):

Proposition 16.12 The function Fk is independent of the choice of orthonormal basis.
Furthermore, for every orthogonal transformation, R ∈ O(n+ 1), we have

Fk(Rσ, Rτ) = Fk(σ, τ), σ, τ ∈ Sn.

Clearly, Fk is a symmetric function. Since we can pick an orthonormal basis of real
orthogonal functions for HC

k
(Sn) (pick a basis of Hk(Sn)), Proposition 16.12 shows that Fk

is a real-valued function.

The function Fk satisfies the following property which justifies its name, the reproducing
kernel for HC

k
(Sn):

Proposition 16.13 For every spherical harmonic, H ∈ HC

j
(Sn), we have

�

Sn

H(τ)Fk(σ, τ) dτ = δj kH(σ), σ, τ ∈ Sn,

for all j, k ≥ 0.

Proof . When j �= k, since HC

k
(Sn) and HC

j
(Sn) are orthogonal and since

Fk(σ, τ) =
�ak,n+1

i=1 Y i

k
(σ)Y i

k
(τ), it is clear that the integral in Proposition 16.13 vanishes.

When j = k, we have

�

Sn

H(τ)Fk(σ, τ) dτ =

�

Sn

H(τ)

ak,n+1�

i=1

Y i

k
(σ)Y i

k
(τ) dτ

=

ak,n+1�

i=1

Y i

k
(σ)

�

Sn

H(τ)Y i

k
(τ) dτ

=

ak,n+1�

i=1

Y i

k
(σ) �H, Y i

k
�

= H(σ),
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since (Y 1
k
, . . . , Y

ak,n+1

k
) is an orthonormal basis.

In Stein and Weiss [142] (Chapter 4), the function Fk(σ, τ) is denoted by Z(k)
σ (τ) and it

is called the zonal harmonic of degree k with pole σ.

The value, Fk(σ, τ), of the function Fk depends only on σ·τ , as stated in Proposition 16.15
which is proved in Morimoto [113] (Chapter 2, Lemma 2.23). The following proposition also
proved in Morimoto [113] (Chapter 2, Lemma 2.21) is needed to prove Proposition 16.15:

Proposition 16.14 For all σ, τ, σ�, τ � ∈ Sn, with n ≥ 1, the following two conditions are
equivalent:

(i) There is some orthogonal transformation, R ∈ O(n + 1), such that R(σ) = σ� and
R(τ) = τ �.

(ii) σ · τ = σ� · τ �.

Propositions 16.13 and 16.14 immediately yield

Proposition 16.15 For all σ, τ, σ�, τ � ∈ Sn, if σ · τ = σ� · τ �, then Fk(σ, τ) = Fk(σ�, τ �).
Consequently, there is some function, ϕ : R → R, such that Fk(ω, τ) = ϕ(ω · τ).

We are now ready to define zonal functions. Remarkably, the function ϕ in Proposi-
tion 16.15 comes from a real polynomial. We need the following proposition which is of
independent interest:

Proposition 16.16 If P is any (complex) polynomial in n variables such that

P (R(x)) = P (x) for all rotations, R ∈ SO(n), and all x ∈ R
n,

then P is of the form

P (x) =
m�

j=0

cj(x
2
1 + · · ·+ x2

n
)j,

for some c0, . . . , cm ∈ C.

Proof . Write P as the sum of its homogeneous pieces, P =
�

k

l=0 Ql, where Ql is homoge-
neous of degree l. Then, for every � > 0 and every rotation, R, we have

k�

l=0

�lQl(x) = P (�x) = P (R(�x)) = P (�R(x)) =
k�

l=0

�lQl(R(x)),

which implies that
Ql(R(x)) = Ql(x), l = 0, . . . , k.
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If we let Fl(x) = �x�−l Ql(x), then Fl is a homogeneous function of degree 0 and Fl is invariant
under all rotations. This is only possible if Fl is a constant function, thus Fl(x) = al for
all x ∈ R

n. But then, Ql(x) = al �x�l. Since Ql is a polynomial, l must be even whenever
al �= 0. It follows that

P (x) =
m�

j=0

cj �x�2j

with cj = a2j for j = 0, . . . ,m and where m is the largest integer ≤ k/2.

Proposition 16.16 implies that if a polynomial function on the sphere, Sn, in particular,
a spherical harmonic, is invariant under all rotations, then it is a constant. If we relax this
condition to invariance under all rotations leaving some given point, τ ∈ Sn, invariant, then
we obtain zonal harmonics.

The following theorem from Morimoto [113] (Chapter 2, Theorem 2.24) gives the rela-
tionship between zonal harmonics and the Gegenbauer polynomials:

Theorem 16.17 Fix any τ ∈ Sn. For every constant, c ∈ C, there is a unique homogeneous
harmonic polynomial, Zτ

k
∈ HC

k
(n+ 1), satisfying the following conditions:

(1) Zτ

k
(τ) = c;

(2) For every rotation, R ∈ SO(n + 1), if Rτ = τ , then Zτ

k
(R(x)) = Zτ

k
(x), for all

x ∈ R
n+1.

Furthermore, we have

Zτ

k
(x) = c �x�k Pk,n

�
x

�x� · τ
�
,

for some polynomial, Pk,n(t), of degree k.

Remark: The proof given in Morimoto [113] is essentially the same as the proof of Theorem
2.12 in Stein and Weiss [142] (Chapter 4) but Morimoto makes an implicit use of Proposition
16.16 above. Also, Morimoto states Theorem 16.17 only for c = 1 but the proof goes through
for any c ∈ C, including c = 0, and we will need this extra generality in the proof of the
Funk-Hecke formula.

Proof . Let en+1 = (0, . . . , 0, 1) ∈ R
n+1 and for any τ ∈ Sn, let Rτ be some rotation such

that Rτ (en+1) = τ . Assume Z ∈ HC

k
(n + 1) satisfies conditions (1) and (2) and let Z � be

given by Z �(x) = Z(Rτ (x)). As Rτ (en+1) = τ , we have Z �(en+1) = Z(τ) = c. Furthermore,
for any rotation, S, such that S(en+1) = en+1, observe that

Rτ ◦ S ◦R−1
τ
(τ) = Rτ ◦ S(en+1) = Rτ (en+1) = τ,

and so, as Z satisfies property (2) for the rotation Rτ ◦ S ◦R−1
τ
, we get

Z �(S(x)) = Z(Rτ ◦ S(x)) = Z(Rτ ◦ S ◦R−1
τ

◦Rτ (x)) = Z(Rτ (x)) = Z �(x),
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which proves that Z � is a harmonic polynomial satisfying properties (1) and (2) with respect
to en+1. Therefore, we may assume that τ = en+1.

Write

Z(x) =
k�

j=0

xk−j

n+1Pj(x1, . . . , xn),

where Pj(x1, . . . , xn) is a homogeneous polynomial of degree j. Since Z is invariant under
every rotation, R, fixing en+1 and since the monomials xk−j

n+1 are clearly invariant under such
a rotation, we deduce that every Pj(x1, . . . , xn) is invariant under all rotations of Rn (clearly,
there is a one-two-one correspondence between the rotations of Rn+1 fixing en+1 and the
rotations of Rn). By Proposition 16.16, we conclude that

Pj(x1, . . . , xn) = cj(x
2
1 + · · ·+ x2

n
)
j
2 ,

which implies that Pj = 0 is j is odd. Thus, we can write

Z(x) =
[k/2]�

i=0

cix
k−2i
n+1 (x

2
1 + · · ·+ x2

n
)i

where [k/2] is the greatest integer, m, such that 2m ≤ k. If k < 2, then Z = c0, so c0 = c
and Z is uniquely determined. If k ≥ 2, we know that Z is a harmonic polynomial so we
assert that ∆Z = 0. A simple computation shows that

∆(x2
1 + · · ·+ x2

n
)i = 2i(n+ 2i− 2)(x2

1 + · · ·+ x2
n
)i−1

and

∆xk−2i
n+1 (x

2
1 + · · ·+ x2

n
)i = (k − 2i)(k − 2i− 1)xk−2i−2

n+1 (x2
1 + · · ·+ x2

n
)i

+ xk−2i
n+1 ∆(x2

1 + · · ·+ x2
n
)i

= (k − 2i)(k − 2i− 1)xk−2i−2
n+1 (x2

1 + · · ·+ x2
n
)i

+ 2i(n+ 2i− 2)xk−2i
n+1 (x

2
1 + · · ·+ x2

n
)i−1,

so we get

∆Z =
[k/2]−1�

i=0

((k − 2i)(k − 2i− 1)ci + 2(i+ 1)(n+ 2i)ci+1) x
k−2i−2
n+1 (x2

1 + · · ·+ x2
n
)i.

Then, ∆Z = 0 yields the relations

2(i+ 1)(n+ 2i)ci+1 = −(k − 2i)(k − 2i− 1)ci, i = 0, . . . , [k/2]− 1,
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which shows that Z is uniquely determined up to the constant c0. Since we are requiring
Z(en+1) = c, we get c0 = c and Z is uniquely determined. Now, on Sn, we have
x2
1 + · · ·+ x2

n+1 = 1, so if we let t = xn+1, for c0 = 1, we get a polynomial in one variable,

Pk,n(t) =
[k/2]�

i=0

cit
k−2i(1− t2)i.

Thus, we proved that when Z(en+1) = c, we have

Z(x) = c �x�k Pk,n

�
xn+1

�x�

�
= c �x�k Pk,n

�
x

�x� · en+1

�
.

When Z(τ) = c, we write Z = Z � ◦ R−1
τ

with Z � = Z ◦ Rτ and where Rτ is a rotation such
that Rτ (en+1) = τ . Then, as Z �(en+1) = c, using the formula above for Z �, we have

Z(x) = Z �(R−1
τ
(x)) = c

��R−1
τ
(x)

��k

Pk,n

�
R−1

τ
(x)

�R−1
τ
(x)� · en+1

�

= c �x�k Pk,n

�
x

�x� ·Rτ (en+1)

�

= c �x�k Pk,n

�
x

�x� · τ
�
,

since Rτ is an isometry.

The function, Zτ

k
, is called a zonal function and its restriction to Sn is a zonal spher-

ical function. The polynomial, Pk,n, is called the Gegenbauer polynomial of degree k and
dimension n+ 1 or ultraspherical polynomial . By definition, Pk,n(1) = 1.

The proof of Theorem 16.17 shows that for k even, say k = 2m, the polynomial P2m,n is
of the form

P2m,n =
m�

j=0

cm−jt
2j(1− t2)m−j

and for k odd, say k = 2m+ 1, the polynomial P2m+1,n is of the form

P2m+1,n =
m�

j=0

cm−jt
2j+1(1− t2)m−j.

Consequently, Pk,n(−t) = (−1)kPk,n(t), for all k ≥ 0. The proof also shows that the “natural

basis” for these polynomials consists of the polynomials, ti(1−t2)
k−i
2 , with k−i even. Indeed,

with this basis, there are simple recurrence equations for computing the coefficients of Pk,n.

Remark: Morimoto [113] calls the polynomials, Pk,n, “Legendre polynomials”. For n = 2,
they are indeed the Legendre polynomials. Stein and Weiss denotes our (and Morimoto’s)

Pk,n by P
n−1
2

k
(up to a constant factor) and Dieudonné [43] (Chapter 7) by Gk,n+1.
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When n = 2, using the notation of Section 16.2, the zonal functions on S2 are the
spherical harmonics, y0

l
, for which m = 0, that is (up to a constant factor),

y0
l
(θ,ϕ) =

�
(2l + 1)

4π
Pl(cos θ),

where Pl is the Legendre polynomial of degree l. For example, for l = 2, Pl(t) =
1
2(3t

2 − 1).

If we put Z(rkσ) = rkFk(σ, τ) for a fixed τ , then by the definition of Fk(σ, τ) it is clear that
Z is a homogeneous harmonic polynomial. The value Fk(τ, τ) does not depend of τ because
by transitivity of the action of SO(n+1) on Sn, for any other σ ∈ Sn, there is some rotation,
R, so that Rτ = σ and by Proposition 16.12, we have Fk(σ, σ) = Fk(Rτ, Rτ) = Fk(τ, τ). To
compute Fk(τ, τ), since

Fk(τ, τ) =

ak,n+1�

i=1

��Y i

k
(τ)

��2
,

and since (Y 1
k
, . . . , Y

ak,n+1

k
) is an orthonormal basis of HC

k
(Sn), observe that

ak,n+1 =

ak,n+1�

i=1

�

Sn

��Y i

k
(τ)

��2
dτ (16.1)

=

�

Sn

�
ak,n+1�

i=1

��Y i

k
(τ)

��2

�
dτ (16.2)

=

�

Sn

Fk(τ, τ) dτ = Fk(τ, τ) vol(S
n). (16.3)

Therefore,

Fk(τ, τ) =
ak,n+1

vol(Sn)
.

� Beware that Morimoto [113] uses the normalized measure on Sn, so the factor involving
vol(Sn) does not appear.

Remark: Recall that

vol(S2d) =
2d+1πd

1 · 3 · · · (2d− 1)
if d ≥ 1 and vol(S2d+1) =

2πd+1

d!
if d ≥ 0.

Now, if Rτ = τ , then Proposition 16.12 shows that

Z(R(rkσ)) = Z(rkR(σ)) = rkFk(Rσ, τ) = rkFk(Rσ, Rτ) = rkFk(σ, τ) = Z(rkσ).

Therefore, the function Zτ

k
satisfies conditions (1) and (2) of Theorem 16.17 with c = ak,n+1

vol(Sn)
and by uniqueness, we get

Fk(σ, τ) =
ak,n+1

vol(Sn)
Pk,n(σ · τ).

Consequently, we have obtained the so-called addition formula:
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Proposition 16.18 (Addition Formula) If (Y 1
k
, . . . , Y

ak,n+1

k
) is any orthonormal basis of

HC

k
(Sn), then

Pk,n(σ · τ) = vol(Sn)

ak,n+1

ak,n+1�

i=1

Y i

k
(σ)Y i

k
(τ).

Again, beware that Morimoto [113] does not have the factor vol(Sn).

For n = 1, we can write σ = (cos θ, sin θ) and τ = (cosϕ, sinϕ) and it is easy to see that
the addition formula reduces to

Pk,1(cos(θ − ϕ)) = cos kθ cos kϕ+ sin kθ sin kϕ = cos k(θ − ϕ),

the standard addition formula for trigonometric functions.

Proposition 16.18 implies that Pk,n has real coefficients. Furthermore Proposition 16.13
is reformulated as

ak,n+1

vol(Sn)

�

Sn

Pk,n(σ · τ)H(τ) dτ = δj kH(σ), (rk)

showing that the Gengenbauer polynomials are reproducing kernels. A neat application of
this formula is a formula for obtaining the kth spherical harmonic component of a function,
f ∈ L2

C
(Sn).

Proposition 16.19 For every function, f ∈ L2
C
C(Sn), if f =

�∞
k=0 fk is the unique decom-

position of f over the Hilbert sum
�∞

k=0 HC

k
(Sk), then fk is given by

fk(σ) =
ak,n+1

vol(Sn)

�

Sn

f(τ)Pk,n(σ · τ) dτ,

for all σ ∈ Sn.

Proof . If we recall that HC

k
(Sk) and HC

j
(Sk) are orthogonal for all j �= k, using the formula

(rk), we have

ak,n+1

vol(Sn)

�

Sn

f(τ)Pk,n(σ · τ) dτ =
ak,n+1

vol(Sn)

�

Sn

∞�

j=0

fj(τ)Pk,n(σ · τ) dτ

=
ak,n+1

vol(Sn)

∞�

j=0

�

Sn

fj(τ)Pk,n(σ · τ) dτ

=
ak,n+1

vol(Sn)

�

Sn

fk(τ)Pk,n(σ · τ) dτ

= fk(σ),

as claimed.

We know from the previous section that the kth zonal function generates HC

k
(Sn). Here

is an explicit way to prove this fact.
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Proposition 16.20 If H1, . . . , Hm ∈ HC

k
(Sn) are linearly independent, then there are m

points, σ1, . . . , σm, on Sn, so that the m×m matrix, (Hj(σi)), is invertible.

Proof . We proceed by induction on m. The case m = 1 is trivial. For the induction step, we
may assume that we found m points, σ1, . . . , σm, on Sn, so that the m×m matrix, (Hj(σi)),
is invertible. Consider the function

σ �→

���������

H1(σ) . . . Hm(σ) Hm+1(σ)
H1(σ1) . . . Hm(σ1) Hm+1(σ1)

...
. . .

...
...

H1(σm) . . . Hm(σm) Hm+1(σm).

���������

Since H1, . . . , Hm+1 are linearly independent, the above function does not vanish for all σ
since otherwise, by expanding this determinant with respect to the first row, we get a linear
dependence among the Hj’s where the coefficient of Hm+1 is nonzero. Therefore, we can find
σm+1 so that the (m+ 1)× (m+ 1) matrix, (Hj(σi)), is invertible.

We say that ak,n+1 points, σ1, . . . , σak,n+1
on Sn form a fundamental system iff the

ak,n+1 × ak,n+1 matrix, (Pn,k(σi · σj)), is invertible.

Theorem 16.21 The following properties hold:

(i) There is a fundamental system, σ1, . . . , σak,n+1
, for every k ≥ 1.

(ii) Every spherical harmonic, H ∈ HC

k
(Sn), can be written as

H(σ) =

ak,n+1�

j=1

cj Pk,n(σj · σ),

for some unique cj ∈ C.

Proof . (i) By the addition formula,

Pk,n(σi · σj) =
vol(Sn)

ak,n+1

ak,n+1�

l=1

Y l

k
(σi)Y l

k
(σj)

for any orthonormal basis, (Y 1
k
, . . . , Y

ak,n+1

k
). It follows that the matrix (Pk,n(σi · σj)) can be

written as

(Pk,n(σi · σj)) =
vol(Sn)

ak,n+1
Y Y ∗,

where Y = (Y l

k
(σi)), and by Proposition 16.20, we can find σ1, . . . , σak,n+1

∈ Sn so that Y
and thus also Y ∗ are invertible and so, (Pn,k(σi · σj)) is invertible.
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(ii) Again, by the addition formula,

Pk,n(σ · σj) =
vol(Sn)

ak,n+1

ak,n+1�

i=1

Y i

k
(σ)Y i

k
(σj).

However, as (Y 1
k
, . . . , Y

ak,n+1

k
) is an orthonormal basis, (i) proved that the matrix Y ∗ is

invertible so the Y i

k
(σ) can be expressed uniquely in terms of the Pk,n(σ · σj), as claimed.

A neat geometric characterization of the zonal spherical functions is given in Stein and
Weiss [142]. For this, we need to define the notion of a parallel on Sn. A parallel of Sn

orthogonal to a point τ ∈ Sn is the intersection of Sn with any (affine) hyperplane orthogonal
to the line through the center of Sn and τ . Clearly, any rotation, R, leaving τ fixed leaves
every parallel orthogonal to τ globally invariant and for any two points, σ1 and σ2, on such
a parallel there is a rotation leaving τ fixed that maps σ1 to σ2. Consequently, the zonal
function, Zτ

k
, defined by τ is constant on the parallels orthogonal to τ . In fact, this property

characterizes zonal harmonics, up to a constant.

The theorem below is proved in Stein and Weiss [142] (Chapter 4, Theorem 2.12). The
proof uses Proposition 16.16 and it is very similar to the proof of Theorem 16.17 so, to save
space, it is omitted.

Theorem 16.22 Fix any point, τ ∈ Sn. A spherical harmonic, Y ∈ HC

k
(Sn), is constant

on parallels orthogonal to τ iff Y = cZτ

k
, for some constant, c ∈ C.

In the next section, we show how the Gegenbauer polynomials can actually be computed.

16.7 More on the Gegenbauer Polynomials

The Gegenbauer polynomials are characterized by a formula generalizing the Rodrigues
formula defining the Legendre polynomials (see Section 16.2). The expression

�
k +

n− 2

2

��
k − 1 +

n− 2

2

�
· · ·

�
1 +

n− 2

2

�

can be expressed in terms of the Γ function as

Γ
�
k + n

2

�

Γ
�
n

2

� .

Recall that the Γ function is a generalization of factorial that satisfies the equation

Γ(z + 1) = zΓ(z).
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For z = x+ iy with x > 0, Γ(z) is given by

Γ(z) =

� ∞

0

tz−1e−t dt,

where the integral converges absolutely. If n is an integer n ≥ 0, then Γ(n+ 1) = n!.

It is proved in Morimoto [113] (Chapter 2, Theorem 2.35) that

Proposition 16.23 The Gegenbauer polynomial, Pk,n, is given by Rodrigues’ formula:

Pk,n(t) =
(−1)k

2k
Γ
�
n

2

�

Γ
�
k + n

2

� 1

(1− t2)
n−2
2

dk

dtk
(1− t2)k+

n−2
2 ,

with n ≥ 2.

The Gegenbauer polynomials satisfy the following orthogonality properties with respect
to the kernel (1− t2)

n−2
2 (see Morimoto [113] (Chapter 2, Theorem 2.34):

Proposition 16.24 The Gegenbauer polynomial, Pk,n, have the following properties:

� −1

−1

(Pk,n(t))
2(1− t2)

n−2
2 dt =

vol(Sn)

ak,n+1vol(Sn−1)
� −1

−1

Pk,n(t)Pl,n(t)(1− t2)
n−2
2 dt = 0, k �= l.

The Gegenbauer polynomials satisfy a second-order differential equation generalizing the
Legendre equation from Section 16.2.

Proposition 16.25 The Gegenbauer polynomial, Pk,n, are solutions of the differential equa-
tion

(1− t2)P ��
k,n

(t)− ntP �
k,n

(t) + k(k + n− 1)Pk,n(t) = 0.

Proof . For a fixed τ , the function H given by H(σ) = Pk,n(σ · τ) = Pk,n(cos θ), belongs to
HC

k
(Sn), so

∆SnH = −k(k + n− 1)H.

Recall from Section 16.3 that

∆Snf =
1

sinn−1 θ

∂

∂θ

�
sinn−1 θ

∂f

∂θ

�
+

1

sin2 θ
∆Sn−1f,

in the local coordinates where

σ = sin θ �σ + cos θ en+1,
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with �σ ∈ Sn−1 and 0 ≤ θ < π. If we make the change of variable t = cos θ, then it is easy to
see that the above formula becomes

∆Snf = (1− t2)
∂2f

∂t2
− nt

∂f

∂t
+

1

1− t2
∆Sn−1

(see Morimoto [113], Chapter 2, Theorem 2.9.) But, H being zonal, it only depends on θ,
that is, on t, so ∆Sn−1H = 0 and thus,

−k(k + n− 1)Pk,n(t) = ∆SnPk,n(t) = (1− t2)
∂2Pk,n

∂t2
− nt

∂Pk,n

∂t
,

which yields our equation.

Note that for n = 2, the differential equation of Proposition 16.25 is the Legendre equation
from Section 16.2.

The Gegenbauer poynomials also appear as coefficients in some simple generating func-
tions. The following proposition is proved in Morimoto [113] (Chapter 2, Theorem 2.53 and
Theorem 2.55):

Proposition 16.26 For all r and t such that −1 < r < 1 and −1 ≤ t ≤ 1, for all n ≥ 1,
we have the following generating formula:

∞�

k=0

ak,n+1 r
kPk,n(t) =

1− r2

(1− 2rt+ r2)
n+1
2

.

Furthermore, for all r and t such that 0 ≤ r < 1 and −1 ≤ t ≤ 1, if n = 1, then
∞�

k=1

rk

k
Pk,1(t) = −1

2
log(1− 2rt+ r2)

and if n ≥ 2, then
∞�

k=0

n− 1

2k + n− 1
ak,n+1 r

kPk,n(t) =
1

(1− 2rt+ r2)
n−1
2

.

In Stein and Weiss [142] (Chapter 4, Section 2), the polynomials, P λ

k
(t), where λ > 0 are

defined using the following generating formula:
∞�

k=0

rkP λ

k
(t) =

1

(1− 2rt+ r2)λ
.

Each polynomial, P λ

k
(t), has degree k and is called an ultraspherical polynomial of degree k

associated with λ. In view of Proposition 16.26, we see that

P
n−1
2

k
(t) =

n− 1

2k + n− 1
ak,n+1 Pk,n(t),

as we mentionned ealier. There is also an integral formula for the Gegenbauer polynomials
known as Laplace representation, see Morimoto [113] (Chapter 2, Theorem 2.52).
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16.8 The Funk-Hecke Formula

The Funk-Hecke Formula (also known as Hecke-Funk Formula) basically allows one to per-
form a sort of convolution of a “kernel function” with a spherical function in a convenient
way. Given a measurable function, K, on [−1, 1] such that the integral

� 1

−1

|K(t)|(1− t2)
n−2
2 dt

makes sense, given a function f ∈ L2
C
(Sn), we can view the expression

K � f(σ) =

�

Sn

K(σ · τ)f(τ) dτ

as a sort of convolution of K and f . Actually, the use of the term convolution is really
unfortunate because in a “true” convolution, f ∗g, either the argument of f or the argument
of g should be multiplied by the inverse of the variable of integration, which means that
the integration should really be taking place over the group SO(n+ 1). We will come back
to this point later. For the time being, let us call the expression K � f defined above a
pseudo-convolution. Now, if f is expressed in terms of spherical harmonics as

f =
∞�

k=0

ak,n+1�

mk=1

ck,mk
Y mk
k

,

then the Funk-Hecke Formula states that

K � Y mk
k

(σ) = αkY
mk
k

(σ),

for some fixed constant, αk, and so

K � f =
∞�

k=0

ak,n+1�

mk=1

αkck,mk
Y mk
k

.

Thus, if the constants, αk are known, then it is “cheap” to compute the pseudo-convolution
K � f .

This method was used in a ground-breaking paper by Basri and Jacobs [14] to compute
the reflectance function, r, from the lighting function, �, as a pseudo-convolution K � � (over
S2) with the Lambertian kernel , K, given by

K(σ · τ) = max(σ · τ, 0).

Below, we give a proof of the Funk-Hecke formula due to Morimoto [113] (Chapter 2,
Theorem 2.39) but see also Andrews, Askey and Roy [2] (Chapter 9). This formula was first
published by Funk in 1916 and then by Hecke in 1918.
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Theorem 16.27 (Funk-Hecke Formula) Given any measurable function, K, on [−1, 1] such
that the integral � 1

−1

|K(t)|(1− t2)
n−2
2 dt

makes sense, for every function, H ∈ HC

k
(Sn), we have

�

Sn

K(σ · ξ)H(ξ) dξ =

�
vol(Sn−1)

� 1

−1

K(t)Pk,n(t)(1− t2)
n−2
2 dt

�
H(σ).

Observe that when n = 2, the term (1 − t2)
n−2
2 is missing and we are simply requiring that� 1

−1 |K(t)| dt makes sense.

Proof . We first prove the formula in the case where H is a zonal harmonic and then use the
fact that the Pk,n’s are reproducing kernels (formula (rk)).

For all σ, τ ∈ Sn define H by

H(σ) = Pk,n(σ · τ)

and F by

F (σ, τ) =

�

Sn

K(σ · ξ)Pk,n(ξ · τ) dξ.

Since the volume form on the sphere is invariant under orientation-preserving isometries, for
every R ∈ SO(n+ 1), we have

F (Rσ, Rτ) = F (σ, τ).

On the other hand, for σ fixed, it is not hard to see that as a function in τ , the function
F (σ,−) is a spherical harmonic, because Pk,n satisfies a differential equation that implies
that ∆S2F (σ,−) = −k(k + n− 1)F (σ,−). Now, for every rotation, R, that fixes σ,

F (σ, τ) = F (Rσ, Rτ) = F (σ, Rτ),

which means that F (σ,−) satisfies condition (2) of Theorem 16.17. By Theorem 16.17, we
get

F (σ, τ) = F (σ, σ)Pk,n(σ · τ).
If we use local coordinates on Sn where

σ =
√
1− t2 �σ + t en+1,

with �σ ∈ Sn−1 and −1 ≤ t ≤ 1, it is not hard to show that the volume form on Sn is given
by

dσSn = (1− t2)
n−2
2 dtdσSn−1 .
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Using this, we have

F (σ, σ) =

�

Sn

K(σ · ξ)Pk,n(ξ · σ) dξ = vol(Sn−1)

� 1

−1

K(t)Pk,n(t)(1− t2)
n−2
2 dt,

and thus,

F (σ, τ) =

�
vol(Sn−1)

� 1

−1

K(t)Pk,n(t)(1− t2)
n−2
2 dt

�
Pk,n(σ · τ),

which is the Funk-Hecke formula when H(σ) = Pk,n(σ · τ).
Let us now consider any function, H ∈ HC

k
(Sn). Recall that by the reproducing kernel

property (rk), we have

ak,n+1

vol(Sn)

�

Sn

Pk,n(ξ · τ)H(τ) dτ = H(ξ).

Then, we can compute
�
Sn K(σ · ξ)H(ξ) dξ using Fubini’s Theorem and the Funk-Hecke

formula in the special case where H(σ) = Pk,n(σ · τ), as follows:
�

Sn

K(σ · ξ)H(ξ) dξ

=

�

Sn

K(σ · ξ)
�

ak,n+1

vol(Sn)

�

Sn

Pk,n(ξ · τ)H(τ) dτ

�
dξ

=
ak,n+1

vol(Sn)

�

Sn

H(τ)

��

Sn

K(σ · ξ)Pk,n(ξ · τ) dξ
�
dτ

=
ak,n+1

vol(Sn)

�

Sn

H(τ)

��
vol(Sn−1)

� 1

−1

K(t)Pk,n(t)(1− t2)
n−2
2 dt

�
Pk,n(σ · τ)

�
dτ

=

�
vol(Sn−1)

� 1

−1

K(t)Pk,n(t)(1− t2)
n−2
2 dt

��
ak,n+1

vol(Sn)

�

Sn

Pk,n(σ · τ)H(τ) dτ

�

=

�
vol(Sn−1)

� 1

−1

K(t)Pk,n(t)(1− t2)
n−2
2 dt

�
H(σ),

which proves the Funk-Hecke formula in general.

The Funk-Hecke formula can be used to derive an “addition theorem” for the ultraspher-
ical polynomials (Gegenbauer polynomials). We omit this topic and we refer the interested
reader to Andrews, Askey and Roy [2] (Chapter 9, Section 9.8).

Remark: Oddly, in their computation of K � �, Basri and Jacobs [14] first expand K in
terms of spherical harmonics as

K =
∞�

n=0

knY
0
n
,
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and then use the Funk-Hecke formula to compute K � Y m

n
and they get (see page 222)

K � Y m

n
= αnY

m

n
, with αn =

�
4π

2n+ 1
kn,

for some constant, kn, given on page 230 of their paper (see below). However, there is no
need to expand K as the Funk-Hecke formula yields directly

K � Y m

n
(σ) =

�

S2

K(σ · ξ)Y m

n
(ξ) dξ =

�� 1

−1

K(t)Pn(t) dt

�
Y m

n
(σ),

where Pn(t) is the standard Legendre polynomial of degree n since we are in the case of S2.
By the definition of K (K(t) = max(t, 0)) and since vol(S1) = 2π, we get

K � Y m

n
=

�
2π

� 1

0

tPn(t) dt

�
Y m

n
,

which is equivalent to Basri and Jacobs’ formula (14) since their αn on page 222 is given by

αn =

�
4π

2n+ 1
kn,

but from page 230,

kn =
�

(2n+ 1)π

� 1

0

tPn(t) dt.

What remains to be done is to compute
� 1

0 tPn(t) dt, which is done by using the Rodrigues
Formula and integrating by parts (see Appendix A of Basri and Jacobs [14]).

16.9 Convolution on G/K, for a Gelfand Pair (G,K)
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